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Abstract IV

Abstract

When computers (people) are networked, their power multiplies geometrically. Not only

can people share all that information inside their machines, but they can reach out

and instantly tap the power of other machines (people), essentially making the entire

network their computer. – Scott McNeely

Scott McNeely’s vision became reality, we have now implemented a networked world.

Machines are networked, humans form networks and we are at the brink of all and

everything in our lives being connected in the Internet of things. While network struc-

tures (graphs) are very well studied, in this thesis it is argued that for many problems

not only structure is of interest but the change in this structure might be of even higher

relevance e.g. the events of individuals joining or leaving groups in a social network.

It is discussed that, although the formal concepts of changing graphs (dynamic graph)

and graphs which track all changes made to them over time (temporal graphs) exist

for a long time, up to now comparatively little use of these concepts is made in applied

computing.

One of the reasons for this is that the application areas often are of very large size

such that actually large-scale temporal graphs are the data structure of concern. For

large datasets horizontally scaled computing systems based on cloud computing infras-

tructure, are the prevalent approach to gain speedup and to solve problems in feasible

time.

This thesis discusses a distributed computing framework called DynamoGraph which

allows to partition large-scale temporal graph data over multiple compute nodes. Ver-

tices are at the core of the used data model and are implemented using temporal

maps, a map data-structure that tracks temporal meta-information of the stored data.

This mechanism is exploited in an extension of the Pregel graph processing paradigm

which makes it applicable for temporal graphs. The work shows the practical feasi-

bility with case-studies and the general scalability (compute resources and data size)

of the approach. The experimental performance evaluation shows that the distributed

computing approach provides significant gains and thus is inevitable in real-world set-

tings.
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Zusammenfassung

When computers (people) are networked, their power multiplies geometrically. Not only

can people share all that information inside their machines, but they can reach out

and instantly tap the power of other machines (people), essentially making the entire

network their computer. – Scott McNeely

Scott McNeely’s Vision ist Realität geworden, wir befinden uns in der Era einer ver-

netzten Welt, in der Menschen, Computer und auch ganz einfach Dinge im Internet

of Things miteinander vernetzt sind. Obwohl Netzwerk-Datenstrukturen (Graphen)

ein sehr genau untersuchtes Forschungsfeld darstellen, stellt sich heraus, dass in vielen

Anwendungen gerade die Änderung in der Netzwerkstruktur von besonderer Bedeu-

tung ist z.B. Personen die einer Gruppe beitreten. Obwohl die formalen Konzepte für

veränderliche Graphen (dynamischer Graph) und auch für Graphen die diese zeitliche

Änderung aufzeichnen (temporaler Graph) schon lange existieren gibt es bisher vergle-

ichsweise wenige Studien in der angewandten Informatik.

Ein Grund dafür ist sicherlich, dass die angesprochenen Anwendungsszenarien nicht nur

nach temporalen Graphen verlangen, sondern üblicherweise auch aus sehr großen Daten-

sätzen bestehen, so dass sehr große temporale Graphen verarbeitet werden müssen. Um

Datenverarbeitung auf immer weiter wachsende Datenmengen skalieren zu können ist

das sogenannte horizontale Skalieren das aktuell bevorzugte Modell. Mehrere Rechner,

meist auf Basis von Cloud Infrastruktur, werden im Verbund verwendet.

In dieser Arbeit wird DynamoGraph, ein Softwaresystem für verteiltes Rechnen auf

großen temporalen Graphen, als Lösungsansatz vorgestellt. Mit Hilfe von Dynamo-

Graph ist es möglich temporale Graphdaten auf Basis einer temporalen Indexdaten-

strukur in einem Rechnerverbund zu verteilen. Die Datenstruktur funktioniert analog

zu existierend Indexdatenstrukturen speichert aber Metadaten zur Dimension Zeit, dies

kann später wiederum in der, auch in dieser Arbeit diskutierten Pregel Implementierung

für temporale Graphen, verwendet werden zum Beispiel um Daten aus bestimmten Zeit-

fenstern zu verarbeitet.
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Der Einsatz von DynamoGraph in praktischen Fallbeispielen zeigt, dass der Ansatz von

Softwareentwicklern in der Praxis, mit vergleichsweise flacher Lernkurve, eingesetzt

werden kann. Weiters wird gezeigt, dass die Methode aus dem verteilten Rechnen,

Skalierbarkeit der Rechner-Ressourcen aber auch des Datensatzes erlaubt. Performance

Tests zeigen, dass die Zugewinne durch das verteilte Rechnen so hoch sind, dass es in

der praktischen Anwendungen unumgänglich ist.
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CAB Compute Aggregate Broadcast (A computing model in parallel computing where

computation is strictly partitioned in the three phases compute, aggregate and

broadcast)
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HPC High-Performance Computing (A field of research where homogeneous computer
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JSF Java Server Faces (Web technology in the arena of Java enterprise)
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Chapter 1

Introduction

Graph models are a versatile abstraction for many real world problems. Examples of

such problems are the recording and analysis of social networks [114, 35], the represen-

tation of protein to protein interaction [18] or the connections in a computer network

like the Internet [13]. Current models of and computation on graphs often focus on

the storage and processing of static data. Static graph models show static snapshots of

real world scenarios as perceived at a certain point in time. Graph database systems

provide stable storage systems for linked data. Graph processing systems use these

graph databases for reasoning on the stored data.

However, the real world references to graph models in many cases are highly dynamic.

The network which is observed in the real world is often under constant change such

that static models of the network do not reflect to reality accurately. This especially

holds for the examples mentioned before and leads to a situation where the dynamic

properties of such linked data cannot be analysed sufficiently with the methods of

traditional graph algorithms [55, 115, 126]. Methods from temporal graph algorithms

can be used to answer questions regarding dynamic properties of graphs.

Moreover the datasets used in many actually graph processing problems are growing

very large in size. With domains like social network analysis and bio-informatics work-

ing on datasets that cannot be feasibly processed on regular graph database systems

especially if they are running on a single system. Storage space, memory and CPU ca-

pacities are the limiting factors which can be mitigated through the use of distributed

computing paradigms [52].

This thesis elaborates on a framework called DynamoGraph which was specifically de-

signed by the author for storage, in-memory management, and processing over large-

scale, temporal graphs. The mechanisms provided by DynamoGraph and their com-

putational base concepts are described in great detail, the frameworks practical fea-

sibility is shown by applying the approach in the domains of social network analysis
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and web-graph analysis, and finally the scalability is demonstrated by running several

experiments on compute clusters of different size.

The remainder of this chapter is structured as follows: In section 1.1 the motivating

background behind this thesis is discussed followed by highlighting open problems of

large-scale temporal graphs in section ??. Then section 1.3 introduces preliminary con-

cepts and definitions of temporal and dynamic graphs. Section 1.4 further motivates

the need for research by illustrating some exemplary application scenarios for Dynamo-

Graph. From these several requirements (see section 1.5) are derived which lead to a

software architectural solution to these requirements (see section 1.6 Hypothesis). Fi-

nally in section 1.7 the contribution of this work to the body of research is outlined and

underpinned with a list of publications in 1.8. Finally, in section 1.9 an overall outline

for this thesis is presented.

1.1 Motivation

Nurtured through a background of interacting with groups in different scenarios when

working as a business process consultant and trainer for diverse topics the author dis-

covered an interest on the behavioral patterns of groups. Especially the different stereo-

typical roles individuals endue in work group scenarios were in the focus of interest.

In a preliminary thesis to this work [102] first experiments with behavioral stereotypes

according to Raoul Schindler [98] were conducted. As an outcome of this work two

main aspects where discovered to be promising for future research.

(1) It became clear that other interesting things in social networks such as fluctuation

between cliques and the change of strategically important hubs in a network over time

can be discovered. This is possible once social network analysis moves away from mere

static graph analysis as done plentiful in current research to the analysis of dynamic

aspects of graphs as found in temporal graph analysis.

(2) The computation of rather simple graph metrics mainly based on vertex degree,

path lengths, and flow analysis already imposed a computational overhead on rather

small dataset of only a few hundred vertices. This leads to the assumption that tools

for social network analysis or network analysis in general when performed on the model

of temporal graphs need mechanisms that allow them to scale for significantly larger

data set sizes. Only if this requirement can be satisfied future computing systems will

be able to use temporal social network as a tool to understand human interaction.
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Further, this work is motivated by the current trends of affectionate computing [99]

where we are on the brink of computing systems to start interacting with humans

in a way that feels very natural to humans. Computers are able to interpret natural

language, are able to derive meaning from that, and respond to a users input accordingly

[31]. Machines today are able to understand a humans context in very much detail.

The physical context (location, time, activity, etc.) can easily be captured by modern

computing systems. The social context however is difficult to grasp by computers.

Humans have an intrinsic sense for analysing a groups structure and defining their own

role and the role of each other in a group. If in future systems computers shall interact

with humans and groups of humans naturally it will be necessary that the computing

actors in the group understand group structure and the roles of individuals in a similar

manner than humans.

Finally, it is believed that similar how we are able to observe the interconnect topol-

ogy of compute systems [59] and reflect on the performance impact different classes of

topologies have on a compute system, we are able to observe social systems and their

temporal topology. This would allow us to analyse large social systems such as an enter-

prise and their workforce and optimise their business processes according to naturally

occurring interaction patterns in order to improve performance of certain processes.

1.2 Open Problems in Large Temporal Graph Processing

Large-scale temporal graph processing is a field of research which still has many op-

portunities for exciting research. As detailed in the following section on preliminaries

(1.3) and in the chapter 2 on related work, the foundations of this field are clear.

The study of networked systems has a vast history and many aspects (algorithms, be-

haviours, patterns, application areas, path finding, componentisation, etc.) are very

well studied.

Certain aspects of the large-scale temporal graph pose new problems which are still open

problems. On a formal level the temporal and dynamic graph have been discussed in

literature. Their application oriented realization are still a field of open discussion. In

this thesis a possible implementation of temporal graph data-structures as a temporal

maps are proposed (see section 3.1).

Based on temporal graph data-structures the actual processing over the data is also a

topic under active discussion. For large graphs the problem has been under discussion

for many years (i.e. high performance computing community) and has found real

world solutions in implementations such as Pregel [73]. The temporal information in
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networked data, however, adds a new dimension of complexity to the problem. The

time dimension grows at a more predictable rate as opposed to the set of vertices.

In this thesis a vertex-centric processing solution to this problem is proposed (section

3.4).

Further more application oriented problems are still open to discussion. Firstly queries

on temporal graphs are still challenging. Query languages are yet to be defined. Current

research on query formalisation is showing first promising results [78]. Secondly the data

format for query results is still a challenging topic. Section 3.8 discusses theory and

implementation of using the proposed temporal graph processing framework for query

tasks.

This results in the final problem observed in this area, which is the visualisation. In

general with large-scale graphs established visualisation techniques for graphs break.

The 2D output space provided by computers is not sufficient to fully visualize billion-

node graphs. It is clear that depending on the application scenario different view levels

(macroscopic, microscopic) need to be provided. The temporal aspect in the graph

adds another level of complexity. It is yet to be discussed how to efficiently visualize

large-scale, temporal graphs. Graph visualisation is generally beyond the scope of this

thesis, nevertheless prototypical implementation of a graph visualisation is provided

with this thesis and is briefly discussed in section 5.3. Further, the case studies shown

used for evaluation make use of graph visualisation (see section 5.6).

1.3 Preliminaries

In the following some terms commonly used throughout this thesis are defined in the

context of related work. This is mainly to avoid confusion with terms that are used

ambiguously throughout the field of computer science and to clearly demarcate terms

that intuitively can be seen as synonyms.

1.3.1 Graphs and Temporal Graphs

In this work the definitions of dynamic and temporal graphs as explained by [43, 58]

are used. The following is a summary of these concepts. Slightly different signs and

symbols compared to the original papers are used to avoid ambiguities throughout this

work.

Definition 1. A graph G is a pair (V,E) where V is a finite set of vertices, and E is

a finite set of edges of unordered pairs (u, v) with u ∈ V and v ∈ V . A graph G can
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Figure 1.1: Dynamic Graph with typical changes

be called vertex-dynamic if the set V varies over time, and edge-dynamic if the set E

varies over time. Moreover a dynamic graph can be both vertex- and edge-dynamic.

This concept reflects to a single static snapshot of a graph which can change over time

i.e. edges getting inserted and removed or vertices getting inserted and removed see

figure 1.1. The challenge in performing computation on graphs of this type are that that

elements (vertices and edges) can change while a potentially long running algorithm is

computing metrics on the graph. Research in the area of dynamic graphs mostly covers

how to react to these changes and how to adapt computed results given a known set of

changes.

Note that definition 1 describes an undirected graph. In a directed graph the same

concept of dynamicity holds in the formal definition only the directed graph is comprised

of ordered pairs. In the directed case the edges are referred to as arcs.

To allow to capture changes in a dynamic graph the concept of a temporal graph was

defined.

Definition 2. A temporal graph T is a set of graphs {G0, G1, G2, . . . , Gt} where Gt =

(Vt, Et) such that any Gt is a static snapshot of the dynamic graph at time window t

in any given time unit.

This means that for any given point t in time the current state of the graph can be

determined and moreover static snapshots for a timespan T covering several points in

time can be computed.As visible in table 1.1 compared to regular edge lists as found

in static graphs edges in a temporal graph also carry a timestamp which refers to the

time when the edge occurs.

In definition 2 the set Et can denote a set of ordered or unordered pairs if a directed

or an undirected graph is considered respectively.

By looking at visual representations of temporal graphs as shown in figure 1.2 it becomes

clear that the temporal dimension has a strong impact on the network structure. The
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Source Target Timestamp

A B t1
A C t2
A E t2
E D t3
B C t4
B D t5
D B t6
A D t7

Table 1.1: Tabular representation of arcs of a temporal graph

At1

Bt1

At2

Ct2

Et2

Dt3

Et3

Bt4

Ct4

Bt5

Dt5

Bt6

Dt6

At7

Dt7

t1 t2 t3 t4 t5 t6 t7

Figure 1.2: Visual representation of a temporal graph

figure shows a temporal graph of 5 vertices and their temporal connections. As clearly

visible in the sample graph certain vertices in the graph are in fact only connected at

certain points in time. This means that the graph concepts for reachability namely

paths and connected components need to be redefined in order to be applicable for

temporal graphs.

Definition 3. A temporal path phi−j is an ordered set of vertices vi ∈ Gt ∈ T starting

at vertex vi and ending at node vj. It is defined as a sequence of hops over distinct

vertices in a defined time window. The path is allowed to hop between time windows a

maximum of h hops.
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In this work we elaborate on graph data that is stored and processed on top of a cloud

based distributed compute cluster (see section 1.3.4 for preliminaries on that topic).

Throughout this thesis the term vertex will be used for vertices (nodes) in a graph.

In our application domain the analysis of communication data and their corresponding

social networks each vertex will represent an individual in an organization. In our

implementation we want to address real world problems where also further information

that is associated with a vertex needs to be stored. We call this further information

the vertex profile or profile. It can contain any arbitrary data. Links between vertices

are referred to as (directed) arcs and (undirected) edges throughout this thesis.

1.3.2 Static Metrics and Analysis

Obviously graph models were created with the goal to better understand how certain

networks behave in nature. Thus many different graph metrics and analysis algorithms

have been developed in the past. These algorithms most often focus on the analysis of

static graphs and are currently extended in various novel approaches (see 2.1). This

section will highlight the most important metrics in graph analysis.

In general graph algorithms can be grouped in algorithms that perform global analysis

i.e. try to find a measure that describes the network as a whole (examples of such

metrics are the small-world property [6], and the density of a graph) and algorithms

that compute local metrics of vertices or sets of vertices (examples are vertex centrality

and vertex degree). Further, algorithms are often categorised into path following and

reachability algorithms that cope with the topic of whether and how a certain vertex

is able to reach other vertices and into algorithms that try to cluster and partition

graphs.

1.3.2.1 Centrality

The term centrality refers to the process of identifying the most important vertices

in a network. However, importance is a fact that needs to be determined differently

according to concrete application scenarios. Thus resulting in different metrics for

centrality being established. In an online social network one might assume that the

vertex with the highest number of neighbors (i.e. most friends) is the most popular

person. This is known as degree centrality in network analysis. Another definition of

popularity might be that the person that is able to reach most people in the network

quickly is most important (closeness centrality), and a further definition can be that the

person that is a relay on most communication channels is most important (betweenness

centrality).
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1.3.2.1.1 Degree Centrality

One of the simplest local metrics in graph theory is the degree of a vertex: Ni. It

measures the number of neighbours of a vertex where Ni =
∑

j∈V eij , eij ∈ E. The

degree is defined for each node (though slightly different definitions are to be found for

weighted and directed graphs) and can be used as a measure for popularity. The degree

centrality of a vertex is defined as the vertex degree normalised by the maximum vertex

degree N = max({Ni, Ni+1, Nn}) in the graph or more formally:

Ci =
Ni

N − 1
(1.1)

The definitions given above refer to a measure of popularity in undirected graphs. Its

lower bound is Cmin = 0 and its upper bound is Cmax = N
N−1 Degree centrality can also

be computed for directed graphs and are then know as in-degree centrality and out-

degree centrality. In-degree centrality is also often referred to as prestige in literature

i.e. a paper which was cited by many others will have have high in-degree centrality in

a citation network and thus have high prestige, or a person nominated by many other

in a social network for an award will have high prestige.

1.3.2.1.2 Closeness Centrality

Another definition of centrality is the fact of how swiftly a vertex can transport infor-

mation to all other vertices in a network. In other word how close the vertex is to all

other vertices on the network. Closeness centrality is computed as the average shortest

path between a vertex and all other vertices in a network. With n denoting the number

of vertices in the graph and dij denotes the length of the shortest paths between i and

j.

Ci =
1

n− 1

∑
j 6=i∈V

dij (1.2)

In social network analysis individuals who are highly connected within their own clus-

ter or community show high closeness centrality (Cmax = 1, Cmin = 0). This metric is

important in many applications since high closeness centrality often refers to influen-

tial positions in a local community. In the social network of a corporation individual

positions with high closeness centrality are often not known to a broader public in the

company but are respected in their local community and are able to quickly spread

information in their local community.



Introduction 9

1.3.2.1.3 Betweenness Centrality

From an applications point of view the metric of betweenness centrality can be seen as

the opposed metric to closeness centrality. Betweenness refers to vertices in a network

that are sitting between clusters and communities and thus are able to bridge infor-

mation in a communication or social network. This metric is very important in social

network analysis for instance where this metric marks information brokers that are able

to transport information between communities which otherwise would not communi-

cate or not communicate efficiently. Real world examples on general social networks

are quite naturally actual brokers (real estate, mortgage, etc.) which make a living by

connecting otherwise disconnected groups.

The betweenness centrality of a vertex is computed by counting the all pairs shortest

paths between vertices in a network, that pass through this particular vertex. In the

following given for a directed graph.

Ci =
∑

j 6=i,k 6=i∈V

pjk(i)

pjk
(1.3)

A bridge in an otherwise disconnected network will reach maximal betweenness in that

network (Cmax = 1). Whereas nomadic vertices that are connected only through a

single arc or edge to the network will have minimal betweenness centrality ( Cmin =

0).

1.3.2.2 Paths and Reachability

A further class of algorithms over networks are reachability metrics and more general

path finding algorithms. Reachability allows to ask the question, if vertex b ∈ V can

be reached by following edges starting at vertex a ∈ V . Any found route between

a and b is called a path. In general two naive approaches for path finding and thus

confirming if any two vertices have reachability are known. Naive path following can be

conducted as a breath first search strategy or in a depth first search strategy. The latter

is easier to implement since recursive function calls can be used instead of maintaining

a data-structure of already visited paths. Both strategies have bad time complexities

of O(|V |+ |E|), which for very dense graphs is O(|V |2).

In practice significantly better performance is reached for instance by using heuristics in

the search process. Especially in application scenarios where a certain sense of proximity

and distance can be computed from general vertex attributes (i.e. locations on a road
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map) the a-* class of algorithms which is based on Dijkstra’s famous search algorithm

are used. A-* search runs in O(bd) time complexity (b denoting the branching factor,

and d is the worst case depth of the solution). So in general it relies on the quality of

the heuristic function that prunes target nodes of to high cost for traversal.

Paths, shortest paths, and reachability are very well studied over static graphs. In

temporal graphs reachability needs to be redefined because reachability will also depend

on the time or frame of time a network is observed in. Certain paths will exist only at

certain points in time.

1.3.3 Important Subgraphs

Many problems in network analysis relate to parts of a larger graph. These parts are

also often called partitions, clusters, and communities usually depending on the exact

area of research. In general a subgraph is always a set of vertices and edges which

themselves are an interesting subject to study without the necessity to have a global

view of the complete network.

The task of extracting subgraphs from a network is often motivated from an analysis

task where parts of a network are to be analysed in greater detail. From an applications

point of view it is mostly desirable to extract subgraphs that conform to natural under-

standing of networks i.e. social networks. Such that subgraphs are selected that reflect

groups and communities that occur in natural networks. The terms community and

group refer to the problem of extracting subgraphs from a network that are naturally

understood as groups by a human observer i.e. communities found in social networks.

From a pure technical point of view the problem of splitting a graph into individual

partitions is motivated by the fact that very large graphs cannot be feasibly handled by

the working memory of a single computer. Thus the term (graph)-partitioning refers

to the problem of splitting a graph of arbitrary size over a set of given resources i.e.

number of partitions.

1.3.3.1 Connected Components

The most strict of a subgraph forming a community is the connected component (or

sometimes referred to as just component). A connected component is a subgraph in

which any two vertices are connected to each other by paths. Furthermore a connected

component is not connected to any other vertices in the supergraph.
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Figure 1.3: Strongly connected components in a directed graph

Natural data observed in typical application areas such as social networks shows that

these networks (after the forming phase) are most likely completely connected. From

any vertex selected from the network at random any other vertex in the network can

be reached by tracing edges between vertices. This means that the whole network

forms a single connected component which is called a giant connected component or

just giant component. While from an analysis approach this property in a graphs does

not give intuitive interpretations of a network. However, it is important to note that

in certain domains all natural graphs expose this giant component property which is

an important factor when designing algorithms such as the Erdos-Reney random graph

algorithm [30], which create artificial networks closely resembling properties of actual

networks.

When observing directed graphs a slightly different definition of connected components

can be given. A subgraph is denoted as a strongly connected component if every vertex

in the component is reachable from every other vertex in the component by paths which

strictly obey edge direction. Figure 1.3 displays a directed graph which is not strongly

connected. The shown graph however has two strongly connected components which

are marked with dotted lines.

Strongly connected components can intuitively be interpreted as strongly connected

communities in a network. It is very likely that information spreads very fast in strongly

connected communities.

1.3.3.2 Clusters and Communities

In many real world scenarios however the concept of strongly connected components

is to strict to reason over clusters of communities. Clusters and communities are a

common in real networks. In social networks for instance communities form based

on common interests, location, profession, etc. This is true also for other networks

such as citation networks where communities are formed by research topic or metabolic

networks which have clusters of functional groupings. In a naive approach obviously

clusters and communities can be found following vertex attributes i.e. clustering all
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vertices in a network which show a certain property such as the same job in a social

network.

However, if such attributes are not available in the dataset or their existence is to be

verified clustering algorithms that are computed over the topology of a graph. Besides

many other algorithms and possible variations of them the Girvan-Newman method is

one of the most popular algorithms for finding communities. The fundamental property

that quantifies communities in graphs is the clustering coefficient [34]. It is defined as

(where Nt denotes the number of triangles on the graph and Nc the number of connected

triples of vertices):

C =
3 ∗Nt

Nc
(1.4)

The clustering coefficient describes the probability that two neighbours u, v of vertex x

are also neighbours themselves. In a fully connected graph (every vertex is connected

with every other vertex) the clustering coefficient is 1. Typical values for real world

networks are in the range of 0.1 to 0.5.

This method is based on the betweenness metric which can be used to find the vertices

living on the edge of clusters. Instead computing betweenness for vertices it can also

be computed for edges as in counting the number of shortest paths that need to pass

through a certain edge. The assumption in the Girvan-Newman algorithm now is that

in highly clustered networks the edges which are between clusters will show very high

betweenness and edges inside of well connected clusters will show low betweenness. The

algorithm is now able to find community structure by iteratively removing the edge

with highest betweenness from the network and re-computing betweenness afterwards.

Through this process edges connecting individual clusters are removed such that the

network unfolds into connected components only containing the vertices that belong to

a certain community.

Figure 1.4 shows the Zachary’s karate club social network [124]. For this network of

a real university karate club it is well known that the club was split into two groups

at some point in time. In the figure the vertices are drawn as rectangles for one group

and as circles for the other group as assigned through a run of the Girvan-Newman

algorithm. Compared with data from a questionnaire available for the original dataset

only the vertex with id 2 was labeled incorrectly. The network was manually arranged

for better readability. Considering no additional data is available it is also difficult for

a human observer to determine which group to assign vertex 2 to.
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Figure 1.4: Zachary’s karate club first level communities

Obviously there exist many more algorithms for graph clustering which were developed

from different background and thus use different approaches and parameters to com-

pute optimal communities. The decision to use a certain approach most often depends

on two factors. First whether a certain approach was designed for a certain applica-

tion scenario such the Girvan-Newman methods have shown to be applicable in social

network analysis and depending on the parameters used will cluster a given social net-

work into communities which are perceived in a similar way by humans. On the other

hand the algorithms also need to be feasible for the problem size. Both the computa-

tional complexity and memory complexity have limitations which when broken make

the application of graph clustering infeasible [97].

Graph clustering can be categorized into global and local clustering algorithms. Global

algorithms compute clusters for a complete graph topology and thus require the com-

plete dataset to fit into memory which in the case of a dense graph will result in memory

complexity of O(N2). Existing global approaches are capable of dealing with up to a

few million of vertices on sparse graphs [47]. For large graphs computation becomes

challenging which is typically also the case for graph clustering. The runtime complexity

of clustering algorithms should stay near the boundary O(n∗k) in order to be scalable,

sub-linear complexities would be highly preferred. Traditional clustering algorithms

such as the Girvan-Newman approach [85] are based on betweenness centrality. In it-

erations the weakest ties (the edges with highest beweenness centrality) are removed

from the graph. Betweenness requires the set of all shortest paths as input, the fastest

known exact approach is Brandes [14] with a runtime complexity of O(nm+ n2logn).

Thus these algorithms are inadequate in the case of very large graphs.
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An algorithm suitable for large scale networks was developed by Raghavan et al. [94].

It is a local algorithm which is based on label propagation. Assuming that a vertex v0

has neighbours v1, v2, v3, . . . , vn then v and each of these vertices has a label denoting

the community they belong to. Vertex v can determine its own community by observing

the community labels of its neighbors. Initially each vertex lives in its own community,

through an iterative process any vertex v updates its community label by observing its

neighbors community labels and setting its label to the community label which is most

often found (perhaps considering edge and node weights) amongst its neighbors. In

sparse graphs densely connected groups quickly reach consensus on a unique community

label. Assuming that k (the number of average edges between vertices) is low and thus

can be neglected and most communities reach consensus after an also low maximum

of t iterations of the process the algorithm presented can assign communities in near

linear time (O(n)).

Clusters and community in networks are a topic which is obviously not only addressed

from a pure technical perspective but also has a wide body of research from sociological

[81], psychological [98], and societal research. From the viewpoint of these disciplines

questions on how and why communities form, how and why they interact and whether

or not they are able to follow a common goal are in the focus of research.

In general there are two terms which are important to discriminate in the discussion:

community and group. These two terms from a sociologists point of view refer to

groups of people and can be distinguished in that sense that communities describe a

set of people who are interacting in some sense, such as the community which is formed

by the set of people working at the same office and thus are interacting. Whereas a

group not necessarily has to have interaction, a group for instance could just form from

a common describing attribute such as the set of people who hold a masters degree in

statistics [112].

1.3.3.3 Graph Partitioning

The problem of finding splits in graphs has obviously been addressed long before the

work of Girvan and Newman. However, the point of view for looking at this problem has

been slightly different. Where clustering and community detection aims to find natural

clusters in a network the algorithm group of partitioning algorithms tries to find a

minimum cut in networks. This means that a network is to be split in a pre-defined

number of partitions (usually of similar size). The partitions are found by trying to

minimize the number of edges that are spanning the split.
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This way of graph partitioning is applied in scenarios where technical aspects of net-

works are in the focus. For instance in a distributed computing cluster where the com-

munication structure of a certain algorithm is known these minimum-cut algorithms

can be used to determine optimal schemas for the load-balancer to distribute the work-

load. Obviously this method is less ideal to be applied on general networks because

regardless of the implicit community structure in a network a minimum-cut algorithm

will always find a fixed number of communities.

1.3.4 Cloud Computing and Big Data

Cloud computing is the state of the art computing paradigm to build current web scale

computing architectures. The implementation part of this thesis is largely built on top

of cloud computing infrastructure.

In general cloud computing is defined as a model model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly pro-

visioned and released with minimal management effort or service provider interaction

[76].

Cloud computing is defined on three service layers: Infrastructure as a Service, Platform

as a Service, and Software as a Service, each with very specific characteristics.

Infrastructure as a Service (IaaS) provides virtual computing infrastructure (servers,

network, storage, etc.) that can be provisioned through software interfaces. The con-

sumer of IaaS resources is decoupled from implementation details such as concrete

server hardware and their setup and maintenance but has full control of virtual com-

pute resources starting at the operating system level. In IaaS computing resources are

often called a node, compute node, and virtual machine. To avoid possible confusion of

the term node with vertices in a graph the term node is only used for compute nodes.

On top of the IaaS tier Platform as a Service (PaaS) is living. PaaS provides computing

services in a defined environment. A platform consists of a runtime environment that is

capable of executing payload code and usually supports a defined set of programming

languages. The platform most often provides a defined set of function libraries that pro-

vide extended functionality over what is available by default for a certain programming

language, and finally platforms most often support for data storage, message passing,

caching, log file storage etc. All components of such a platform are designed in a way

that they can be used in a highly scalable manner.



Introduction 16

PaaS deliberates its users from aspects such as software updates, operating system

maintenance tasks, and any mundane tasks related to scaling systems up an down.

This allows for software architectures of automatically scaling systems. In the context

of this thesis the reference implementation is built in a manner that it can be run on

top of IaaS clouds and is itself provided in the PaaS model.

Users of the system described in this thesis in turn will most likely provide their appli-

cations in the Software as a Service (SaaS) model. A model where the user of a system

is accessing the service through a web browser and is completely freed from any system

maintenance related tasks such as software updates and backups. In the context of this

thesis the demonstrator applications fall in the category of SaaS.

Another field this thesis touches is the field of big data processing. Big data discusses

the problem of data that grows so big in size that it becomes awkward to handle on

traditional systems [49, 71]. The data becomes big in three dimensions often referred

to as the 3V’s (1) volume, (2) velocity, and (3) variety of data. For the volume and

velocity dimension the requirement of processing this data on highly scalable systems

that run on large scale compute clusters becomes apparent.

1.4 Addressed Application Areas

The framework presented in this thesis is a general computational framework for pro-

cessing over large scale temporal graphs. As described in the introduction automated

social network analysis is a perfect match as the main application scenario. In the fol-

lowing section concrete application examples from automated social network analysis

are described in greater detail. Since the framework is designed to be generic, other

application scenarios from other fields of research such as the analysis of computer

networks are also described in this section.

1.4.1 Social Network Analysis

In the recent years analysis of social networks has seen a big hype. Many publications

are discussing different topics in this field of research (organisational issues [125], size

of networks [87, 26, 121], etc.). When reviewing literature it is important to clearly

distinguish the different forms of social networks available today. In literature and

popular news the term social network is often used synonymously with the term online

social network (OSN). An online social network is a web-based system where users can

register a profile often with their real name and have the ability to connect with friends
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and acquaintances through creating a mutual connection often referred to as friend

request. On top of this basic functionality OSN provide tools for sharing information

and media with peer users. Depending on the topic of main interest we find famous

representatives of such OSN in Facebook, Google+ and VK.com for general friendship

networks, and LinkedIn and Xing for professional networks.

In contrast to that Sociology refers to a social networks when discussing about networks

that are formed between humans. These networks do not only exist in the digital world

but have always formed in real life and have been studied under various aspects such

as in the field of Sociometry [81]. This means that not for all social networks digital

representations are available such that these need to be derived trough other means from

interaction, communication and linked data [109, 2]. During this process it is important

to also analyse typical characteristics of social networks. General networks can form

many-fold, such as found in e-mail communication where people are interacting with

each other. On other media however formed networks do not necessarily form social

networks and thus communities. An example for this are blogging and microblogging

(i.e. Twitter) services. In these systems users can follow other users news and messages

and interact on this content. Which means that the original creator of content is not

necessarily aware of the audience he or she reaches with it. This awareness occurs only

during interaction and the community forming phase; when another member of the

system reacts to content effectively creating what is called mutual awareness [69].

On top of social network data many-fold analysis can be performed depending of the

goals of a study. In the past a vast amount of literature discussed social network analysis

from many different points of view. In the following some of these studies are picked

to highlight application areas that could benefit from temporal graph analysis.

1.4.1.1 Sizes of Social Networks

In their famous study of the small-world property [121] that is inhabitant to many social

networks Watts and Strogatz describe a property that from any starting vertex in a

social network any other vertex in the network can be reached through a maximum

of N hops. This ground-breaking work was later detailed in follow up publications

[120, 119]. Already from these studies it is clear that a property such as the small-

world phenomenon is interesting to study in the context of a temporal network. Static

networks such as those described by online social networks have been used to verify the

property. The question however is if the information stored in an online social network

is inaccurate in that sense that the temporal aspects of a real social network (vertices

appearing and vanishing) are not addressed by the model. Temporal networks observed

in particular short time-intervals might exhibit that the general reachability assumption
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(any social network forming a giant connected component eventually) is not holding.

A temporal network will rather show multiple smaller connected components [11].

This is also underpinned by work of Amaral [6] that (besides other interesting prop-

erties) shows that clusters in real social networks saturate in that sense that while

communities and clusters grow the probability of new vertices joining a community

shrinks. Depending on the network it seems that there are some limitations for the

size of clusters. It is assumed that the death of vertices and thus their eviction from

clusters creates new room for further vertices joining the cluster. This model is de-

tailed from a different point of view by Dunbar [87, 26] who claimed that there is a

cognitive limit as of how many social contacts humans are able to keep track of. This

property is referred to as Dunbar’s-Number in literature and is claimed to refer to a

social group of around 150 persons that one can keep sensible relationships with. The

property has been verified in online social networks [36]. Temporal networks could help

in this area of research in providing a temporal model of large social networks and

allowing researchers to study the small-world property and Dunbar-Number in sliding

windows.

1.4.1.2 Communication Networks and Group Performance

Communication networks in the age of digital communication leave communication

traces in e-mail databases [20], chat logs, and phone logs. All of which highly acces-

sible to analysis tools. Communication networks allow for a multitude of aspects to

be analysed. For instance various publications on graph clustering [97] use them for

automated group detection. On a smaller level communication structures and consid-

ering the temporal aspect communication patterns can be observed. In the past studies

analysed the effect of communication structures on group performance for instance [67].

This allows to observe whether or not certain structures lend themselves better to solve

collective tasks than others.

In temporal graph analytics these approaches can be extended to predict whether cer-

tain groups are improving in terms of communication structure compared to their past.

Set aside concerns regarding privacy, organisations could monitor their structures to

detect communication deficiencies and bottlenecks.

1.4.1.3 Co-Author and Co-Actor Networks

Another important class of social networks are co-author and co-actor networks. These

classes of co-* networks have also sparked popular interest mainly because their data



Introduction 19

can easily be understood by a wide audience. This is especially true for the movie

co-actor network. Actors for instance are trying to be as close in the co-actor graph

to other famous actors as possible. There exists a parlour game which is referred to as

the six degrees of Kevin Bacon1. The goal of this game is given any actor to find the

shortest path between Kevin Bacon and said actor. It is believed that Kevin Bacon

acted in so many movies and TV-productions such that every film-actor can be linked

to Kevin Bacon in a maximum path length of 6 in the co-actor network. The co-actor

network is manifested in various databases. One of the most popular ones being the

Internet Movie Database (IMDB) 2 which besides pure movie and TV-show metadata

also provides crowd-sourced ratings. From the IMDB data it has been shown that

the actor relationships in fact form a giant connected component [44] such that the

assumption that every actor with significant public exposure cannot be farther than

6-degrees from Kevin Bacon.

In science a similar phenomenon can be observed with the co-author network. Co-

author networks are the dataset of choice for many graph and network related publica-

tions. This is mainly due to the availability of data in various research paper databases

and again that researchers are well aware of the data inherent in the co-author net-

works. In some scientific communities the author Paul Erdös is the undisputed center

of earth3. This is at least true for mathematics and related sciences. Paul Erdös was a

very active author and engaged with more than 500 collaborators. This is why it has

become some sort of sport to reach a very low Erdös-Number as being as close in the

co-author network to Erdös as possible4.

Besides their popularity and the reachability games played on top of them, both net-

works (co-author and co-actor) also provide temporal information. In co-author rela-

tionship the publication date marks a point in time when the authors have collaborated

and for movies this is given by the release date.

1.4.1.4 Criminal Networks

A class of networks that could also benefit from temporal graph analytics are criminal

networks. Criminal networks are a tool in criminal investigation. Oftentimes the mere

visualisation of actors in a case helps to shed further light onto a situation. This tool is

also well known from popular fiction where the actors, their pictures and relationships

are pinned on a board for improved case overview. In the real world these kind of

1SixDegrees.org http://www.sixdegrees.org
2Internet Movie Database (IMDB): http://imdb.com/
3Paul Erdös Project: http://www.acs.oakland.edu/grossman/erdoshp.html
4As a side note: Paul Erdös was also active in graph and network theory. Many of the papers cited

in this thesis are authored by people with particular low Erdös numbers around 3 to 4. Also the
thesis advisors have spectacular low Erdös numbers (Paul Spirakis: 3, Gabriele Anderst-Kotsis: 4).

http://www.sixdegrees.org
http://imdb.com/
http://www.acs.oakland.edu/grossman/erdoshp.html
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information are stored in information systems which enable automated network analysis

or data is pulled from archive in cases where large conspiracy networks are considered

[8].

Also for this class of networks temporal aspects are of uttermost importance. For

instance in a current case and the related network of actors it can be of importance

to compare with past networks to find hidden nodes and thus other actors that might

also be involved a current case [17]. In naive analysis approaches one can assume that

actors that show up as actors in multiple past networks have a higher probability of

being involved in a current case.

1.4.1.5 Learning Networks

Social interactions also play a key role in the process of learning. Modern approaches

for learning are showing tremendous shifts in learning methods away from a teacher

to learner information flow in static classroom settings towards mentored self-driven

approaches. The latter have been enabled by various technological advancements that

now make digital learning spaces a reality. However, in modern learning scenarios

also roles of the actors are breaking up. Individuals can occupy multiple roles such as

mentor, trainer, trainee, mediator, information-hub, etc. even in parallel.

This leaves room for new research regarding the analysis of what is called the learning

network. Meaning the network that actors involved in learning and they artefacts they

use in the process. Temporal graph analytics can help analyse how individuals change

subjects as they progress through their personal learning experience. Temporal graph

clustering can help to show how individuals addressed different topics over time. This

information can be used by other learners to identify efficient learning paths.

1.4.1.6 Political Networks

Another class of interesting networks are political networks. These form through the

interactions of politicians and political parties. While parts of the political network are

not visible to the general public the official political discussions of legislative bodies such

as parliaments of the house of representatives in various countries are well documented,

even throughout history, in transcripts. Many countries worldwide are following the

Open Data trends and as measure of transparency these transcripts are made avail-

able to the public. In some particular cases these transcripts are even annotated and

converted into structured data such that the political debate can be converted to a

network diagram with only little overhead. This is indeed the case for example for
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the U.S. House of Representatives [91] and the Italian Parliament [7]. Which naturally

have been the subject of studies.

Political networks are very interesting to observe over time to get a sense how the

political landscape evolves over time. This can be done at a very macroscopic level

[91] as in observing how different political forces evolve over time. In the example of

the U.S. government, it can be observed that the two strongest forces in the country

have been drifting apart over time. While political analysts might have observed this

through the use of temporal graph analysis this property can be underpinned with

data. It comes with no surprise that an online piece which was published on the blog

of Renzo Lucioni in 20135 covering the senate voting relationships received much press

coverage.

On a micro-level the individual clusters within a governing body can be studied. An

interesting property of these clusters is the inner cohesion of these clusters. The work

of Amelio [7] gives room to the assumption that temporal analysis of political networks

and especially the evolution of cohesion can be used as indicator for how successful

parts of a political body work, and consequently can be used as predictors for whether

or not a certain political group is going to be (re-)elected as the government.

Inspired by the aforementioned work also the framework described in the presented

thesis was used as basis for political network analysis. Using the historical data from

the Austrian parliament it was shown that the temporal graph can be used to reason

over coalition and opposition and their evolution over time [106]. Details of this case

study can be found in section 5.6.2.

1.4.2 Computer Networks and the Web

Since the beginning of the Internet small disconnected local area networks have merged

into one giant connected network referred to as the Web. While the perspective leaves

out the fact that certain network segments are strongly firewalled from the rest of

the network it is still save to assume that large fractions of the modern computing

infrastructure are connected to the Internet. This trend is even moving on to connecting

even more user devices then ever which is currently being coined as the Internet of

Things.

The Web in its more than 25 years of history has transitioned through many phases.

From a network for education and research it has constantly picked up economic trends

such that it has reached its commercial peak by now. The individual phases of the Web

5Renzo Lucioni: http://www.renzolucioni.com/senate-voting-relationships/

http: //www.renzolucioni.com/senate-voting-relationships/
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and the Internet must also be visible in the network structure itself. It is safe to assume

that in the beginnings only a very little number of nodes was connected to the network

and certain hotspots hosted much of the information available on the Web. This trend

moved to a very distributed landscape of nodes with certain nodes on the web being

of higher importance than others (see rating algorithms such as PageRank [89]) and

generally a larger audience of consumers using the network. Today the landscape has

again shifted towards, on the one hand a distributed set of nodes that has already led

to the situation that on a global scale we ran out of IP addresses, but on the other hand

content provided on the Internet being mainly driven from what is called information

silos. Social media sites such as Facebook, Twitter, and LinkedIn but also popular

search engines and information portals such as Google account for such silos. Content

is not created on distributed nodes but in only a small number of silos.

From a temporal aspect the different phases of the Web can be observed through the

use of temporal graph analytics. Moreover real-time usage information about the web

can be analysed to see shifts in graph metrics over time. It can be used to observe how

certain sites on the web become popular and others drop in popularity and go out of

service eventually. A foretaste of such temporal network analytics is given in chapter 6,

section 6.4.2 where the system developed for this thesis is evaluated over a real-world

click graph.

1.4.3 Cartography and Maps

The final class of temporal networks addressed in this thesis are maps. Digital cartogra-

phy lends itself to graphs as data-structures as a model for road networks. These have

been used for many decades and some of the most important graph algorithms origi-

nated as problems over road networks. Although these may be outperformed by faster

derivates [24] some algorithms such as A*-search are still an important base model for

heuristic path finding in graphs.

Road networks are also undergoing constant change. Compared to the other networks

listed in this section they naturally change at a much slower rate. This might lead to the

assumption that a temporal data warehouse for road maps is not required. However,

for modern road networks up to date usage statistics from road-side sensors and mobile

phones are available. Such that road networks can be used to reason on the mobility

patterns of individuals [38]. This together with temporal graph models allow to study

the effects of short term changes (traffic blocks) and long term changes on the road

network on usage statistics. This can be used in traffic planning to simulate various

scenarios for future projects.
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1.5 Requirements

From the last sections requirements on a system suitable to process large-scale temporal

graphs efficiently can be derived. First of all a system like this needs to be able to store

temporal graph data and needs to provide fundamental support for operating on the

temporal dimension of the graph. Further the system needs to be scalable in terms of

allowing to handle graphs of a very large scale. Finally as a result of the scalability

requirement special focus needs to be put on fault tolerance since fault in very large

systems is more likely and needs to be tolerated to some extend by the system.

1.5.1 Temporal Dimension

The temporal dimension of networked is a key criteria for a system for temporal graph

processing. This means that the systems users need to be able to store a temporal

graph in snapshots as proposed in [43] and [58]. These snapshots will refer to static

views of the graph for certain points in time. This will allow for any point in time for

the set of current vertices in the graph and the set of edges connecting these graphs can

change. Moreover other properties of vertices and edges also need to be stored with

temporal indexing such that any attribute of an object in the graph can change over

time i.e. vertex and edge labels, metrics, and descriptive attributes.

Users of such a system need to be able to use the temporal dimension of the graph in

queries and processing tasks. It needs to be possible to generate a static snapshot of the

graph for a certain period of time such that static graph metrics can be computed as

in traditional graphs. Further it needs to be possible to directly address the temporal

components of the graph such that temporal properties such as the temporal distance

[115] between any two nodes can be computed.

1.5.2 Scalability

Further such a system in order to be useful in practice needs to be able to scale to

larger graph sizes. From the nature of natural temporal graphs such as social networks

we get the impression that their change in data size is mainly growth. If one observes a

social network described by interaction it becomes apparent that the number of edges

in the network will grow over time. Special mechanisms would be required to make the

system forget older data that is perhaps not relevant to current analysis tasks. On the

other hand also the number of vertices seen in the network might fluctuate. Vertices

will most likely be added to a network and only very seldom be removed.
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A requirement will be that the system can be amplified and narrowed according to

current resource demands. It has to be possible to perform these changes in system

size during system runtime without the need to stop the system and reload a possibly

very large dataset from backend storage.

1.5.3 Fault Tolerance

Finally a system handling large-scale networked data needs provide fault tolerance ca-

pabilities. As systems grow larger in size also the probability that any of its component

fails increases. Such that as a system designer one needs to accept the fact that one or

more components of the system will fail eventually.

When thinking about application scenarios where temporal network data is collected

and stored in a processing platform failure might not be acceptable. Especially if

the collected data represents a valuable asset. This means that the proposed system

needs to be fault tolerant and be able to recover from failures of part of the system

automatically.

1.6 Hypothesis

As outlined in chapter 1 interesting and important questions on networked data cur-

rently cannot be answered, because the temporal dimension of such data is widely

neglected in frameworks for large-scale graph processing. It is assumed that these open

issues can be tackled by providing mechanisms for temporal graph partitioning, which

allow distributed storage of temporal graphs, and the application of methods from dis-

tributed computing to be applied to perform distributed temporal graph processing.

1.6.1 Temporal Graph Partitioning

On the scalability dimension of the problem the hypothesis is that by using cloud

based infrastructure very large scale network datasets can be partitioned in such a

way that certain computing and storage instances are responsible only for parts of the

graph. This problem is already a known problem discussed in work related to graph

partitioning.

As explained earlier the definition of temporal graphs is a set of static graphs which

reflect the snapshots of the temporal graph at certain time-windows. It would feel very
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natural to partition graphs along the temporal dimension since this would go conform

with their definition. This is called a multi-slice temporal graph model [82].

However, it is very likely that the growth of a temporal graph along its number of

vertices outnumbers the growth in the temporal dimension. In this case it might be

better to store the graph as a model with time-stamped edge lists [55] and structurally

partition the graph. Which is done in the same fashion as found in classical graph

partitioning algorithms. This way of partitioning will most likely integrate better with

existing graph processing systems.

1.6.2 Distributed Temporal Graph Storage

Once a feasible partitioning scheme for temporal graphs can be found the next problem

of distributed temporal graph storage needs to be solved. Distributed storage of data

poses the problem that elements of a dataset that span several partitions are usually

difficult to split. In the scenario of linked temporal data and under the assumption

that time-stamped edge lists can be used as the model a vertex-centric approach of

representing the data can be chosen.

The assumption is that a vertex in a graph can be stored in a fully self-contained fashion

such that each vertex carries all the information about itself. This means that all meta-

data for a vertex (name, and any other arbitrary attributes) are stored together with

time-stamped edge-lists of the vertex in a document.

An edge can only exist if both the connected vertices of the edge exist such that it is

a valid option to avoid storing edge-lists independently of vertices. The only downside

to this approach will be that data about edges will be duplicated.

1.6.3 Distributed Temporal Graph Processing

In recent research on distributed computing a trend for processing large-scale datasets

can be observed. When methods of distributed computing are applied most often

mechanisms are used where computational intelligence (i.e. code) is sent to the data

for local processing and aggregated results are sent to a central coordination instance.

This allows for better scalability of the computing systems and avoids bottle-necks

imposed by network links.
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It is believed that by applying compute aggregate broadcast mechanisms [63] and more

precisely a Pregel style processing model [73] on top of the distributed temporal storage

also efficient distributed processing can be implemented.

1.7 Contribution

Assuming that feasible, scalable, and stable implementations for the problems men-

tioned in the last sections can be found the contribution of this work is a framework

that closes a gap between theoretical work in the area of temporal graph algorithms and

large-scale graph processing. A software package like the presented can make temporal-

graph algorithms applicable to natural datasets and thus will enable further research

on the dynamic properties of large networked systems.

The research for DynamoGraph phased through several milestones, each of which pro-

viding results that are documented in this thesis. In a first phase a general literature

review over the current body of dynamic graph algorithms, temporal graph models,

large-scale graph problems, and distributed computing was conducted. The outcome

of these is committed to paper in a previous section on preliminaries (see 1.3) and in

greater detail in chapter 2 on related work.

Parallel to literature review first application scenarios i.e. in the analysis of behavioural

stereotypes in social networks were analysed an published as a first conference paper

[109]. This clearly motivated the need for a distributed computing approach since it

was not possible to compute complex graph metrics in feasible time. This resulted in

distributed storage concepts (distributed temporal maps) for temporal graphs which

are documented in in this thesis in great detail in chapter 3, section 3.1. Based on the

temporal maps first prototypes of a distributed computing platform on top of existing

Big Data solutions were built. These first prototypes showed undesired behaviour on

top of certain data patterns (directed temporal graphs with loops) such that details

about them are not part of this thesis but are documented in the following paper:

[110].

From literature review and overall technological decisions a set of possible graph parti-

tioning concepts where at choice. Graph partitioning is a very well studied topic such

that the contribution of this thesis is merely a discussion of graph partitioning strategies

applicable for large-scale, temporal graphs. Properties of graph partitioning algorithms

to allow for frictionless distributed graph storage and processing are discussed in depth

in 3, section 3.2.
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Starting with the general technical decision, that horizontal scaling must be favoured

over vertical scaling (economic reasons and general state of the art in distributed com-

puting), different distributed computing concepts where studied and evaluated. This,

alongside with requirements researchers and software developers would impose on a

processing platform, lead to the decision that existing distributed graph processing

methodologies can be extended for temporal graph processing. This thesis contributes

to distributed graph processing with extensions over Pregel [73] that provide general

improvements to the concept but more importantly support the use of temporal con-

cepts in Pregel processes. Together with selected algorithms and query concepts the

Pregel extensions are documented in the remainder of 3.

To prove practical feasibility and to allow to methodically test the scalability of the

approach a reference implementation of the presented concept was implemented. This

reference implementation is based on state of the art distributed computing frameworks

and is aimed to allow software developers to implement data analysis projects on top of

it. Exemplary applications where implemented in case studies. The software framework

is documented in chapter 4 and instructions on how to use the framework together with

first results from case studies are documented in chapter 5 [103].

The final contribution of this thesis is the evaluation of the presented framework and

its reference implementation. Chapter 6 presents evaluation methods and results from

experiments with two temporal graph datasets of different size from the domains of

social networks and the web graph [105].

1.8 List of Publications

During the course of writing this dissertation several papers directly linked with the

progress of this research were written and accepted at different scientific conferences

and journals.

In the first phases of this research the focus was on collecting data from mobile phones

such as phone call logs, SMS, e-Mail, and Bluetooth proximity data which can be used

to create a temporal network that reflects to a groups social network [109]. Later the

overall architecture and a broader outlook on the project was presented. It was dis-

cussed how mobile sensor data forming a temporal network can be interpreted to create

new application scenarios [108]. Finally details about the distributed temporal graph

storage and processing system where discussed as work progressed. Details about the

vertex-centric data-model and preliminary tests with established distributed computing
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frameworks where discussed in [110] and details on the Pregel-style processing approach

where discussed in [111] and [105].
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Matthias Steinbauer, Markus Hiesmair and Gabriele Anderst-Kotsis, Making Comput-

ers Understand Coalition and Opposition in Parliamentary Democracy, Lecture

Notes on Computer Science, Electronic Government, Volume 9820, Springer, 2016

(received outstanding paper award). [106]

1.9 Outline

The remainder of this work is structured as follows. In chapter 2 related work from rel-

evant fields such as temporal graph algorithms and cloud-based distributed computing

is discussed. Chapter 3 the architecture and methods of the distributed temporal graph

processing framework are discussed in detail and a reference implementation in Java is

discussed in chapter 4. An introduction on the usage of the reference implementation

is presented in chapter 5 along with some case studies. The systems evaluation and

the results are presented in chapter 6 and chapter 7 closes this thesis with concluding

remarks.
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Chapter 2

Related Work

This thesis touches many different aspects in the field of computer science such that a

structured literature review in the related areas becomes inevitable. This chapter first

touches upon the formal concept of temporal graphs (section 2.1) and temporal graph

metrics (section 2.1.1), and their possible use in dynamic graph algorithms (section

2.1.2). In contrast to that, more application oriented topics in computer science are used

as the foundation layer of this thesis to allow for the proclaimed large-scale temporal

graph datasets.

2.1 Temporal Graphs

The concept of a temporal [55] and a dynamic graph [43] have been discussed for many

years in literature. A comprehensive summary of the topic is provided in [58]. At first

the properties dynamic and temporal seem interchangeable. However, if the field is

closely studied it becomes clear that a dynamic graph describes a graph that in general

can change over time. The model of a temporal graph is extending over the dynamic

graph as it also tracks changes in a graph.

According to Harary [43] a dynamic graph is defined in accordance with classic graph

definitions where the graph G is a pair (V,E) with V being the finite set of vertices,

and E the finite set of edges. With E containing unordered (undirected graph) pairs

{u, v} of distinct edges. Formally we can call a graph G vertex-dynamic if the set V

varies over time and edge-dynamic if the set E changes over time. Consequently graphs

can be both vertex- and edge-dynamic at the same time.

The foundational work of Harary already states that one prospective way of modelling

a dynamic graph is as a sequence of static graphs. So we can say the temporal graph
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T is a set of graphs Gt = (Vt, Et) where any Gt ∈ {G1, G2, G3, . . . , Gn}. Gt is a static

snapshot of T at time t.

In other related work (Kempe et [55] as an example) use a temporal graph model which

is based on timestamped edges. The concept is also known as edge labeling. This is

instead of having multiple snapshots of the temporal graph the general definition of

the graph is slightly changed to accommodate for the temporal aspect. Then an edge-

labeled, temporal graph is a graph L is a pair (V,E) with the same behavior as discussed

above but for the set E. Less formally defined as in [55] this means E is an inconclusive

set of edges. Having each e ∈ E labeled with a timestamp denoting the point in time

the endpoints of e ”communicated”.

2.1.1 Temporal Graph Metrics

In the context of this thesis temporal network metrics are an important topic in contrast

to the static metrics already discussed in the preliminaries (section 1.3). This is also

reflected by an increased interest in the topic over the recent years in several different

formats. A publication worth highlighting in this context is Temporal Network Metrics

and their Application to Real World Networks by John Kit Tang [116] which provides

a comprehensive introduction to the topic of temporal networks and their application

areas, and then discusses different temporal network metrics such as temporal distance

metrics, temporal centrality measures, the impact of time on information spreading,

and temporal reachability in greater detail.

It is important to note that certain metrics we see as given in the case of a static graph

have drastically different meaning in the temporal case. For instance reachability mea-

sures and thus paths describe a different concept in both cases. On static graphs the

metric of a shortest path is applied in many different application scenarios such as path

finding in road networks, and computing distances between actors in social networks

which can be used for optimal information dissemination. However, als already exten-

sively argued links in a social network are not necessarily persistent. These links can

break such that a computed shortest distance in a graph is not necessarily the optimal

path for information dissemination. A shortest path provides the minimum number of

hops necessary to reach a vertex b starting at a. Such a path does not contain any

information about time. This makes it necessary to define a temporal path and to

measure its temporal distance [115]. In contrast to the length of a shortest path (num-

ber of hops) the temporal distance gives an estimate on the time it takes to transport

information from a vertex a to b.
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Tang et al. define a temporal path between the two vertices a and b as follows:

phab(tmin, tmax) is the set of paths starting at a and ending at b such that each passes

through nodes nt11 . . . n
ti
j with the restriction that ti−1 ≤ ti. Less formally speaking

path segments can only continue a path that was already connected in the current

timeframe ti or in any previous time segments. This is in close logic with the message

sending idea given before. A message cannot be sent onwards if it was not received at

an earlier time. h denotes the horizon of the path it refers to the maximum number of

temporal hops a path might use. It thus gives an upper bound on the time a message

can take to propagate from a to b.

Consequently a temporal distance dhab(tmin, tmax) is the measure for the number of tem-

poral hops it takes to move a message from a to b. In accordance with the restrictions

given above d is ∞ if no valid temporal path between a and b exists. Similarly other

well known metrics have their temporal counterpart defined in literature: Temporal

centrality [56], temporal clustering [86], etc. many of which are summarized and for-

mally analyzed in [60]. And other metrics are found only over temporal graphs for

instance link delay and triadic closure [126] to name only a few.

In recent related work important aspects of information dissemination in temporal

networks are discussed. In a very natural manner a question to ask over a temporal

graph is as how fast information can spread in the network. Thus logically temporal

graphs can be categorized as fast and slow networks. A fast network is a network for

which all-to-all information spread can be achieved with a high probability in a single

time period [4].

2.1.2 Dynamic Graph Algorithms

As touched in the intro of this section a graph can be classified as dynamic or temporal

graph. But also algorithms over graphs can fall into these categories. Over a temporal

graph certain metrics can be computed in arbitrary time windows such that metrics

can be analysed over time. The class of dynamic graph algorithms concerns graphs

undergoing change. In contrast to the temporal graph algorithm the dynamic algorithm

tries to answer the question, given a certain graph, an already computed metric, and

a set of changes (vertex and edge insertions and deletions), is it possible to compute

the value of the metric after the changes would have been applied. Clearly the idea

is to efficiently update the solution of the metric instead of recomputing (which is the

prevalent concept in this thesis).

The idea of dynamic graph algorithms was extensively discussed by Eppstein et al.

[29]. The cited work provides a broad overview over the topic and gives a very good
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Figure 2.1: Dynamic graph with two edge delete operations

introduction into the related research. In general problem are categorized into classes.

A problem is called fully dynamic if solution update can be performed regardless of

the type of graph updates. In contrast a problem is only partially dynamic if only

certain types of update operations are allowed. In more detail a problem can further

be incremental if efficient solution update is only possible on insert operations and

decremental if this is the case only for deletions.

Clearly there are many cases where the amortized time for updating the solution outper-

forms the time to recompute the solution. To highlight with an example let us consider

a simple undirected graph over which the all pairs shortest paths need to be computed

(i.e. as input for a clustering algorithm). Over undirected graphs Dijkstra’s algorithm

[21] is the most well known solution with a runtime complexity of O(V 2). Optimized

solutions using external data structures are providing O(E + V logV ) performance [33]

for the same problem.

In figures ??, ??, and ?? a dynamic graph is shown at three stages. In each stage

another edge (4:5 and 3:2) being removed. For the graph the set of all pairs shortest

paths was computed and recorded in the leftmost table 2.11.

Considering the information given now incremental prune and update operations over

the result table can be performed instead of recomputing the all pair shortest paths.

Let us consider the delete operation which removes the edge 4:5. Clearly all shortest

paths containing a path segment [4 : 5] need to be removed from the result set and

recomputed. In this case the vertex pairs (1, 4), (1, 6), (4, 5), and (5, 6) require updated

solutions (see the updated data in the center of table 2.1).

The second case (removal of edge 2:3) follows the same pattern. A pruning process can

remove all affected paths and set out to recompute for the candidates. The interesting

thing is, that in this step for none of the pruned shortest paths new paths can be found.

1In the case multiple candidate paths were available one was chosen at random. And the table does
also not contain any reverse paths. If the path from any vertex A to B was already computed
then the return path B to A is not in the table as an individual path. These are assumptions and
simplifications made to improve readability of the example.
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a
Source Target Path

1 2 {1, 2}
1 3 {1, 2, 3}
1 4 {1, 5, 4}
1 5 {1, 5}
1 6 {1, 5, 4, 6}
2 3 {2, 3}
2 4 {2, 3, 4}
2 5 {2, 5}
2 6 {2, 3, 4, 6}
3 4 {3, 4}
3 5 {3, 2, 5}
3 6 {3, 4, 6}
4 5 {4, 5}
4 6 {4, 6}
5 6 {5, 4, 6}

b
Source Target Path

1 2 {1, 2}
1 3 {1, 2, 3}
1 4 {1, 2, 3, 4}
1 5 {1, 5}
1 6 {1, 2, 3, 4, 6}
2 3 {2, 3}
2 4 {2, 3, 4}
2 5 {2, 5}
2 6 {2, 3, 4, 6}
3 4 {3, 4}
3 5 {3, 2, 5}
3 6 {3, 4, 6}
4 5 {4, 3, 2, 5}
4 6 {4, 6}
5 6 {5, 2, 3, 4, 6}

c
Source Target Path

1 2 {1, 2}
1 3 {}
1 4 {}
1 5 {1, 5}
1 6 {}
2 3 {}
2 4 {}
2 5 {2, 5}
2 6 {}
3 4 {3, 4}
3 5 {}
3 6 {3, 4, 6}
4 5 {}
4 6 {4, 6}
5 6 {}

Table 2.1: All pair shortest paths for the stree stages given in figure 2.1

So it is safe to conclude that the last delete statement has disconnected the graph (table

2.1c).

It has been shown that in certain cases the application of dynamic graph algorithms

can provide tremendous speedup. In [40] the concept is implemented for betweenness

centrality. For synthetic graphs speedups between 100 and 400 have been reached and

for real world collaboration networks they range in 36 to 148.

They system designed in this thesis does currently not make use of dynamic graph

algorithms. However, it can serve as a testing ground to evaluate dynamic graph

algorithms in large-scale scenarios and to benchmark dynamic implementations against

naive implementations over the temporal graph.

2.1.3 Temporal Graphs and Graph Databases

Naturally applied computing translated the models of temporal and dynamic graphs

into real world applications. Data models usually serve for in-memory processing but

also need persistent counterparts for long-term storage of the data.

Graph databases are used as efficient means of storing, updating, and retrieving graph

data. As the enumeration already shows the graph in a graph database is by definition

able to change over time. Such that a graph database stores a dynamic graph.

The existing implementations for graph databases such as Neo4j2 database are highly

efficient and support features one expects from a modern database system such as

consistency models and transactions. In general graph data can be well distributed

2Neo4j: http://neo4j.com/

http://neo4j.com/
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Figure 2.2: A graph with intermediate, temporal vertices between edges

among multiple partitions such that also very large datasets can be stored in graph

databases. A famous representative of these distributed graph databases is Titan3.

Graph databases provide extensive query languages and models that allow application

developers to run query against the data base and retrieve the results back in their

application. Complex algorithms that compute graph metrics cannot be submitted to

the database and executed with the concept of data locality in mind.

Moreover graph databases are designed for dynamic and static graphs and thus lack

features for the temporal aspects. For both of the presented systems extensions for

temporal data storage and querying exist with different implementations.

In Neo4j temporality is emulated through intermediate, typed vertices. These vertices

refer to either a point in time or to a timespan and thus allow the application developer

to connect vertices with temporal concepts. In figure 2.2 a graph with temporal con-

cepts is represented. To point out two examples the vertices v0 and v2 are connected

at time t0 and t1 whereas v0 and v1 are connected at t0 only. Obviously this way of

modeling temporality allows for simple queries of data with time aspects. For instance

a query for all vertices labeled t0 and their adjacent neighbours would allow retrieval

of all vertices that have mutual connection at time t0. Neo4j provides query language

support to retrieve temporal concepts [15]. In the cases where algorithmic processes

are executed over the temporal graph this way of graph representation is significantly

slower. Oftentimes metrics are computed over in-going and out-going edges which in

this case would mean that to determine the connection-weight of two vertices at a cer-

tain time-frame would require lookup and processing of multiple edges and intermediate

vertices. Which is obviously slower compared to reading edge attributes.

The Titan graph database in contrast allows applications to implement time as attribute

in the data. This means that vertices and edges can carry a time attribute which needs

to be evaluated during reasoning over the graph. Edges between nodes can show up at

3Titan: http://thinkaurelius.github.io/titan/

http://thinkaurelius.github.io/titan/
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Figure 2.3: A multi-graph with time attributed edges

multiple times thus this storage model requires that the graph model is implemented

as a multi-graph. This conforms with the concept of temporal graphs also described in

[55].

Figure 2.3 shows a graph with time-attributed edges which reflects the same network

and time information as the graph in figure 2.2. It becomes clear that any computation

performed over such a multi-graph in worst case requires to read all edges of a vertex

in order to determine whether or not an edge for a given time period exists. While in

theoretical algorithmic analysis the edge iteration and traversal of an algorithm will in

any case (multi-graph or graph) contribute to the worst case runtime complexity with

O(e). It is clear that real world implementations will suffer from a far larger number

of edges found in the multi-graph.

2.2 Large Graphs

As the problem size grows also the networked data can grow. A graph growing over the

obvious limitations of a computer (processing and RAM) requires more sophisticated

mechanisms for processing. One of the most obvious ways of mitigating the memory

limitation of machines is to move the model to larger background memory on disk.

This is where the graph databases discussed in the last section 2.1.3 provide apposite

answer but not for distributed and efficient processing.

If computation over networked data is considered different representations are used

in applied computing. The prevalent ways of representing a graph in memory are

adjacency matrices and vertices with edge lists. For the adjacency matrices naive

approaches have atrocious memory complexity of O(n2). For extremely dense graphs

this limitation might not be a problem but for some of the real world graphs discussed

in this thesis (social network analysis, technological networks) it is very well known

that they form sparse graphs where the naive implementation of an adjacency matrix

will result in the detriment of hefty mounts of unused memory. One solution is the use
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of sparse matrices as data structure. On the other hand in memory representation of

vertices with edge lists also has its disadvantages. Many graph algorithms have efficient

formulations as matrix operations which makes their naive implementations over edge

list to slow to compete.

For some of the networks presented in this thesis the resource limitations of a single

computer are a realistic boundary. For instance the Click dataset used for evaluation

(see section 6.4.2) has uncompressed on disk storage of the raw data of just above 13TB.

Independently of the in-memory model chosen, clearly this amount of data cannot fit

into memory of state of the art commodity hardware. In general large-scale graphs are

a topic of great interest such that multiple datasets of large scale exist.

Many of the datasets available for research are collected in collections. In context of

large-scale graphs the most important collection is the Stanford Large Network Dataset

Collection [68] (sometimes referred to SnapNets). At the time of writing the collection

contained well over 100 distinct datasets from around 15 different backgrounds. Some

of the largest graphs found in the collection are online social networks and meme / topic

networks. In the first category networks from Orkout4 with around 3 million actors

and 117 million edges and Friendster5 with 65 million users and 1.8 billion edges are

the largest.

The Orkut and the Friendster datasets were collected in a study which compared struc-

tural communities in online social networks (as those found by a community detection

algorithm or perceived by observers) with so called ground truth communities (groups

which users of the network actively joined) [123]. For details on the many other networks

found in SnapNets the interested reader is referred to the extensive online documenta-

tion6 of the collection.

Another interesting collection of networked data is The Koblenz Network Collection

[61]. It is not focused on large networks but some of the networks listed there are of

huge scale. For instance Twitter7 crawls with 52 million profiles and around 2 billion

edges and data from LiveJournal8 with 10 million profiles and 112 million edges can be

4The Orkut online social network was acquired by Google and shut down in 2014. The network was
very popular in certain areas of the world such that at peak the platform was used by over 300
million users. http://www.orkut.com

5Friendster was founded in 2002 and in 2004 was the largest online social network worldwide. Later
it was outperformed in number of users by the more popular network MySpace. Friendster tried
to refocus to remain in the very competitive online social network industry but then shut down its
services in 2015. http://www.friendster.com

6Stanford Large Network Dataset Collection: http://snap.stanford.edu/data/
7Twitter is an online social networking service with relatively loose coupling between its users. It is

famously known for allowing its users to communicate with messages limited to 140 characters, so
called ”tweets”. http://www.twitter.com/

8LiveJournal is an online social network that allows its users to create blogs and journals online.
http://www.livejournal.com

http://www.orkut.com
http://www.friendster.com
http://snap.stanford.edu/data/
http://www.twitter.com/
http://www.livejournal.com
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found together with an extensive collection of Wikipedia graphs in various languages,

categories and sizes.

As large graphs are a field under active study in the following related work in the area

of distributed storage and processing of very large graphs is discussed.

2.3 Parallel and Distributed Computing

A natural approach to provide the resources to store and process very large graphs

is via scaling. In general computing resources can be scaled vertically as in adding

more physical resources to single machines (larger memory and disk capacity, adding

processors). The down-side of this approach is that computers quickly hit limitations

with this way of scaling (the number of processor sockets on a mother board, the

maximum memory size that can be addressed by the memory subsystem, etc.) and in

commodity hardware vertical scaling is usually only done in very expensive enterprise

mainframe computers. The current prevalent model for scaling thus is horizontal scaling

as dividing a problem over multiple computers each of which responsible for a smaller

partition.

Current state of the art for distributed computing sees two important trends. There is

the classical high-performance computing (HPC) community which is mainly science

driven and uses large-scale homogeneous super computing clusters. This is in contrast

with the still trending topic of using cloud provisioned computing resources to gain

insight into large-scale datasets which is coined as the field of Big Data. Moreover the

following paragraphs and sections will reveal that the lines between these two trends

dislimn. We see systems using traditional HPC frameworks over cloud computing

infrastructure and we see the use of Big Data systems on super computers.

2.3.1 Distributed Matrix Processing

Distributed matrix processing was already discussed in very early days of distributed

computing. Homogeneous distributed processors organized as hypercubes were one of

the prevalent computing model. Typical tasks included Gaussian elimination with large

numbers of variables. This very computing model performs drastically better over dense

matrices whereas real world networks often have sparse adjacency matrices [79].

Formally many graph algorithms have efficient solutions over the adjacency matrix

of the graph. Especially for iterative stochastic processes over the adjacency matrix,
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matrix multiplication is one of the most important operations. For the storage of

sparse graphs (as they occur in real world problems such as social networks) sparse

matrices can be used as memory efficient data-structures. However, as even these

sparse matrices grow to larger sizes with even larger graph models memory of single

computers might become insufficient. In [53] a system is presented which is capable

of distributing sparse matrices over multiple compute nodes. In order to achieve this

the distributed filesystem HDFS, which is part of the popular open source MapReduce

[23] implementation Hadoop, is used. Kang et al. [53] as a basic processing mechanism

provide distributed sparse matrix processing on top of Hadoop. The operation is named

GIM-V (Generalized Iterated Matrix-Vector multiplication).

The adjacency matrix of a graph has a big advantage over other matrices in that

generally the order of columns and rows can be adjusted under certain restrictions.

This can be used to optimize the layout of the matrix or the graph over multiple

partitions. Kang et al. show that GIM-V allows to implement many popular graph

algorithms such as PageRank, the computation of the graph diameter and radius.

The work also provides interesting insight over real-world experiments with a static

snapshot of a web-graph obtained from Yahoo. The graph consists of around 6.7 billion

edges and is analysed as a small set of connected components making the whole graph

a giant connected component. Similar analysis is performed with several snapshots of

social network data from LinkedIn for which it is shown that the small world property

holds. The diameter stays below 7 in all their experiment runs.

2.3.2 High-Performance Computing Model

In contrast to the adjacency matrix graphs can also be represented as discrete objects

and link-lists that hold the edges / arcs between them. In science many large-scale prob-

lems have been solved by more general purpose parallel computing models. All around

the world data-centers running various versions of MPI are used to distributed all sorts

of scientific problems. In [70] challenges that come with parallel graph processing are

addressed. As opposed to traditional large-scale problems graphs drive data-driven

computation, they are unstructured, have poor locality and have a high data access

to computation ratio. Traditional methodologies for scaling fail and problems such as

to how design task granularity, whether and how to use global memory, and how to

efficiently balance storage and computing workloads need to be addressed. Lumsdaine

et al. also briefly touch upon the fact that besides all the complex technical aspects of

this topic still software developers require simple programming primitives to work with

in order to allow for stable software.
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A first group of systems that fall into the category of high-performance computing

models are the natural combination of using (graph) databases as a storage backend

and a distributed computing approach as a processing frontend. In [80] such a system

is described which uses a central router component that through the use of a hashing

function is able to route read- and write operations to the correct graph partition. As a

storage backend the document store CouchDB9 is used. In general the presented work

does not provide temporal graph representation and its core focus is not on processing

but on the distributed storage of graphs. The system provides extensive mechanisms for

graph data replication to provide for better data locality while distributed algorithms

run.

A similar approach is presented in [45] using the already discussed Neo4J database

as backend storage. In contrast to the focus of this thesis no temporal aspects are

addressed and also the sharding mechanism is not used. The presented system makes

use of the METIS [54] graph partitioning scheme and runs a local Neo4J instance

for each partition. In this respect it is superior to DynamoGraph which in currently

only provides hashing schemes. One of the main outcomes of this paper is that the

METIS scheme provides a clear performance benefit (30% for social network data, 15%

for recommendation network data) over naive hashing. As a processing framework

GoldenOrb is used which is described in greater detail in the next section 2.3.3.

In contrast to the previous two approaches distributed in-memory systems are used in

another line of research. The rationale behind this is that disk-bound systems have

a natural bottleneck in a computers IO-performance which causes high performance

penalties in graph processing due to the high data access to processing ratio. Through

the use of faster RAM this problem can be diminished. The project Trinity [101] is

based on a distributed memory cloud. The distributed memory cloud is a in-memory

key value store that is organized in so called memory trunks. These memory trunks

have disk based backup copies. Obviously in a distributed memory cloud chunks of data

cannot be addressed directly by its memory address but Trinity makes use of a hashing

mechanism. A key concept in Trinity is the segregated storage of vertices, edges and

metadata which keeps the individual storage blocks slim and allows the use of indexing

mechanisms. In Trinity multiple processing paradigms are implemented. One is based

on Pregel [73] (see details in section 2.3.3) and others are traversal based lookups. The

latter can be used for instance to search attributes of neighboring vertices (i.e. a user in

a social network looking for friends of friends with similar interests). As a performance

indicator it is stated that Trinity can answer 3-hop reachability queries on a 104 billion

edges graph in around 100 milliseconds on average.

9Apache CouchDB: http://couchdb.apache.org

http://couchdb.apache.org
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The in-memory processing concept of Trinity finds it extensions in Chronos [42] and

later in ImmortalGraph [77]10. Chronos and ImmortalGraph add methods for temporal

graph processing to the in-memory processing concept11. In Chronos the data locality

problem is addressed, in general a temporal graph exhibits locality problems in the

time- and structure dimension.

The Chronos engine can store static snapshots of a temporal graph and aims to store

multiple snapshots of the same vertex close to each other. This behaviour is later

exploited in the processing engine where a single algorithm executed over multiple

snapshots is computed in so called batches. Batch operations associated with a single

vertex are processed in a block such that time consuming operations such as pulling

data from other partitions only happen once per vertex instead of once per vertex and

snapshot. This comes with the drawback that this exact performance driving behaviour

cannot be exploited in situations where data is continuously added to the system.

Moreover adding data to the model can and will cause in-memory reorganisation.

ImmortalGraph [77] introduces the snapshot group as a basic unit of storage in the

system. A snapshot group describes a timespan in which graph manipulations took

place. The temporal graph information can be extended incrementally as new snapshot

groups can be added. Apart from that ImmortalGraph provides the same API functions

(vertex and edge queries, Pregel based processing) as Chronos.

2.3.3 Cloud Computing and Big Data

Already in the last sections hints towards a processing concept named Pregel were

given. Pregel [73] is a highly-scalable, vertex centric, distributed processing concept for

graphs. It originates from the trend of processing datasets of growing volume, velocity

and variety (3Vs [65] of Big Data [71, 49]). In this arena the embarrassingly parallel

processing paradigm MapReduce [23] marks a history of tremendous success.

The general idea of the MapReduce paradigm is that many data processing tasks can

be split into a load, map, shuffle, reduce, and write phase. The load, shuffle, and

write phases are mostly task independent and thus have generic implementations in

the corresponding MapReduce implementations (e.g. Hadoop12, MongoDB13). Software

developers applying MapReduce are left with implementing the map and reduce phases

10Trinity, Chronos and ImmortalGraph are projects by Microsoft Research
11Looking at the timespan when these projects moved from large-scale (2013) to temporal (2014), and

large-scale and temporal (2015) it is clear that DynamoGraph addresses a current problem.
12Hadoop MapReduce: https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
13MongoDB MapReduce documentation: https://docs.mongodb.com/manual/core/map-reduce/

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://docs.mongodb.com/manual/core/map-reduce/
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of processing pipelines. These phases (and also read and write) can be executed fully

distributed. This makes MapReduce programs tremendously scaleable.

Pregel is distributed graph processing using the MapReduce paradigm over edge lists of

a graph. In its general idea Pregel implementations (for instance Giraph14, GoldenORB

[95]) thus can use generic MapReduce cluster infrastructure for processing.

The success of Big Data projects also lends itself to the great efforts that where made

to provide an extensive open source ecosystem. Most famously the Apache Hadoop15

project, soon after the original MapReduce paper, started to create implementations

of the Hadoop Distributed File System which closely resembled the Google Distributed

File System and a MapReduce implementation running on top of it. This was the start-

ing point of many other open projects that used this infrastructure as their backbone:

HBase16 (BigTable implementation [16]), Hive, etc. In Apache Giraph17 an open source

implementation of Pregel for the Hadoop ecosystem can be found.

In general it has been found that Pregel is suitable in application scenarios like the ones

presented in this thesis. Especially social network analysis algorithms such as com-

puting clustering coefficients, finding components (connected components), estimating

the diameter and degree of separation computation, have efficient implementations in

Pregel [93]. However, in the real world implementation of Pregel algorithms we see a

reoccurring pattern where algorithms have to break out of the massive parallel process-

ing paradigm. Where a Pregel job is designed to theoretically run a small function in

parallel for all vertices in a graph still many of the discussed algorithms require aggre-

gation. This is why extensions over Pregel have been proposed and tested which allow

for simpler and more efficient algorithm formulation. These extensions are the possi-

bility to run multiple jobs in a sequence, to allow global operations for a job to enable

aggregation function, and also dynamic repartitioning schemes are proposed [96].

In recent related work we see a change in the Big Data landscape which causes a shift of

paradigms. MapReduce jobs have a performance bottleneck which is their disk-bound

read and write phase. This together with an upcoming general requirement to process

data in real-time lead to the development of newer Big Data processing approaches that

allow for massive distributed stream processing (see Apache S4 (incubating)18, Apache

Storm19) and puts more focus on in-memory processing.

14Apache Giraph: http://giraph.apache.org
15Apache Hadoop: https://hadoop.apache.org/
16Apache HBase: https://hbase.apache.org
17Apache Giraph: https://giraph.apache.org/
18Apache S4, incubating project; the time of writing this not under active development:

http://incubator.apache.org/s4/
19Apache Storm: http://storm.apache.org

http://giraph.apache.org
https://hadoop.apache.org/
https://hbase.apache.org
https://giraph.apache.org/
http://incubator.apache.org/s4/
http://storm.apache.org


Related Work 43

The current iteration of Big Data platforms has a prevalence for the Apache Spark

framework20. That itself integrates well with the existing Hadoop ecosystem. In general

Spark can use data that is living on Hadoop driven stacks such as off of the Hadoop

distributed file-system and Hadoop based databases such as HBase, but it can also

run standalone. Most importantly it provides the current state of the art Big Data

processing framework. Developers are deliberated from creating MapReduce jobs to

describing data-processing pipelines which are automatically translated into optimal

processing paradigms.

This new processing paradigm is also the foundational layer for a new graph-parallel

framework on top of Spark which is called GraphX [122]. GraphX extends on Spark’s

Resilient Distributed Datasets (RDD) and provides a graph datastructure called the

Resilient Distributed Graph (RDG). These are tabular representations of vertices and

edges and provide extended functionality such that data in the RDG can change without

affecting running algorithms. Thus enabling processing of dynamic graphs.

Still the related practical systems up to now do not provide direct interfacing of temporal

graphs. In very recent related work Moffitt and Stoyanovich present a data-warehouse

approach for temporal graphs called Portal [78]. As opposed to DynamoGraph which is

discussed in this thesis Portal provides a declarative query language which extends over

SQL to allow efficient querying and exploratory data analysis on temporal graphs. The

approach lends itself very well to practitioners in data-warehousing and analytics since

reoccurring patterns in their model are queries over RDD’s which represent vertices

and edge-lists. In general it is shown that more general algorithms (such as PageRank

[89]) can be implemented as language extensions.

2.4 DynamoGraph Distinctive Features

The work presented in this thesis results in a software prototype called DynamoGraph.

It is a distributed processing framework which in the exact same realization is yet to

be found in related work. The generic storage backends provided by graph databases

either do not fulfill the requirements to provide efficient distributed computation over

the stored data or do not provide out of the box support for temporal graph structure

and reasoning.

In the high-performance computing arena the processing approaches often require cus-

tom machines and do not support the state of the art cloud computing models where

distributed processing resources are provisioned on demand. This is possible with mod-

20Apache Spark: https://spark.apache.org

https://spark.apache.org
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ern Big Data systems which are designed to provide scalable storage and computing

resources but no self-contained solution for reasoning on large and temporal graphs is

available.

Recent related work [78] shows that the demand for large-scale, temporal graph pro-

cessing exists. It is safe to assume that systems like Portal are in a similar stage of

development as DynamoGraph but have a different focus.
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Chapter 3

Distributed Temporal Graph

Processing Framework

As presented in previous chapters temporal graphs are a natural choice for modelling

social network systems. Since these networks tend to grow very large in size and also

their historical changes need to be tracked to create generate new findings on top of

social networks the size dimension is even more problematic. In this chapter a system

for distributed temporal graph processing is presented. The distributed storage and

processing system is designed in a way that it supports horizontal scaling and thus

can adapt to growing temporal graphs. This system is implemented as a generic graph

processing system such that it is also applicable to other dynamic graph processes such

as protein to protein interaction, and changes in internet network behaviour.

3.1 Temporal Maps as Data Structure

The framework presented in this thesis operates on temporal graph data. In general

there are two widely used forms of representing graph models in memory: adjacency

matrices (as described in related work 2) and vertices with link lists. As already high-

lighted in related work and preliminaries memory usage for graph storage reaches O(n2)

worst case complexity (very dense graphs) such that in-memory representation for very

large scale graphs will exceed memory sizes available on single computers. Which raises

the demand for distributed computing approaches (details on the distributed comput-

ing models are discussed in section 3.3). For adjacency matrices distributed matrix

processing frameworks can be used [53] which allow to implement matrix based graph

algorithms in distributed computing environments.

The distributed computing framework explained here uses vertices with linked lists that

hold the pointers (arcs, edges) to other vertices are used to store the graph data. This
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is done mainly for the following reasons: In distributed computing environments it is

just easier to store vertices together with link information as independent documents,

because this way it is assured that all link information is available on the local machine

when accessing a vertex. Further these documents can integrate very well with modern

Key-Value and document storage systems. And finally the temporal aspect of a graph

can be modeled in a more elegant way than on top of matrices.

In the presented system vertices are described in a document structure that itself is

a map of key-value pairs called the profile. In general arbitrary information can be

stored in maps, especially sets, lists and again maps can be stored as the value of any

key-value pair. Certain keys of the map describing a single vertex have special meaning

to the framework. These keys are an identifier which uniquely identifies a vertex in the

system and edge-lists for the incoming and outgoing edges of a vertex.

An example profile from a social network analysis task can be found in listing 3.1.

The document is formatted in JSON [1] which is widely used in social networking

and semantic web applications. The profile 39827736 describes a person named Rob

Henderson and is connected via one outgoing and one incoming arc to the vertex

39761932.

Listing 3.1: Example vertex profile in JSON notation

1 {

2 id: 39827736,

3 name: ’Rob Henderson ’,

4 description: ’’,

5 inEdges: [ {

6 weight: 7.3,

7 edgeType: ’PHONE ’,

8 source: 39761932,

9 target: 39827736, } ],

10 outEdges: [ {

11 weight: 10.0,

12 edgeType: ’EMAIL ’,

13 source: 39827736,

14 target: 39761932, } ],

15 }

Since the model contains a temporal dimension also the basic data-structures used to

describe this model need contain a temporal component. The design of the presented

framework is based on maps capable of storing a temporal dimension. A temporal map

data-structure is a map that is sliced up in time-frames of a certain size. The size of
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the time-frame is called the maps resolution. Data elements (key-value pairs) stored in

the temporal map are always living in a certain time-frame. Thus a temporal map is a

list of regular maps; one map for each time-frame in the temporal map.

Insert operations on any temporal map always need to specify a point in time. The

temporal map determines the time-frame the data element needs to be inserted to, and

inserts the element in the map associated with the time-frame the specified time lies

within. The insert operation i on any temporal map M can be defined as i(M,k, v, t)

where k denotes the map key to be addressed, v refers to any arbitrary data to be

inserted and finally t describes the insertion time-stamp.

Read operations in contrast need to specify a time-frame in which the read operation is

to be executed. The read operation queries all regular maps for the specified time-frame

to retrieve data elements and returns the data from these maps found by querying with

the specified key. Formally a read operation r over any temporal map M can be defined

as r(M,k, b, e). Where k denotes the key to be retrieved, b marks the begin and e marks

the end of the time-frame to be considered by the read operation.

Obviously this behaviour can and will lead to conflicts where a data element to a certain

key occurs in different time-frames with different values. Such that corrective measures

need to be taken in order to resolve occurring conflicts. Several different strategies can

be used to resolve conflicts in temporal maps.

Temporal preference uses the temporal information stored in the map to retrieve the

youngest or the oldest element returned for the key k. The retrieval of the

youngest element is default behavior.

Temporal aggregate: In situations where the evolution of a certain attribute in the

temporal map is being addressed temporal aggregate can be used as conflict solv-

ing strategy. This is actually not a conflict solution but just aggregates all results

found for k in a new map where the time-stamps assigned in the temporal map

are used as key.

Aggregate functions can be used where users are only interested in mathematical ag-

gregates of values stored in the temporal map. The used aggregate function such

as maximum, minimum, average, and median can be specified as function argu-

ment and is computed during the read operation in the temporal map.

Set aggregation: In the case the data type of values stored in the temporal map is of

set, or map then a special set aggregation strategy can be used. This will combine
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all values found for a certain k into a new collection containing all the elements

found in the temporal map.

The listing 3.2 shows the same vertex profile already presented in listing 3.1 converted

to a temporal map. All the maps key-value pairs are now wrapped in maps identified

by time-stamp keys. A new optional property resolution denotes that the temporal

map is being stored with a month based resolution.

The example shows how the month-long time-frames generated by the month resolutions

setting are referred to by the UNIX-time-stamp describing the begin of the time-frame.

In the example profile the first time-frame is indexed with 1420070400 which is the 1st

of January 2015 and thus refers to the month of January 2015.

Listing 3.2: Example temporal vertex profile in JSON notation

1 {

2 id: 39827736,

3 resolution: ’MONTHS ’,

4 ’1420070400’: {

5 name: ’Rob Henderson ’,

6 description: ’’,

7 inEdges: [ {

8 weight: 3.3,

9 edgeType: ’PHONE ’,

10 source: 39761932,

11 target: 39827736, } ],

12 outEdges: [ {

13 weight: 4.0,

14 edgeType: ’EMAIL ’,

15 source: 39827736,

16 target: 39761932, } ],

17 },

18 ’1422748800’: {

19 inEdges: [ {

20 weight: 4.0,

21 edgeType: ’PHONE ’,

22 source: 39761932,

23 target: 39827736, } ],

24 outEdges: [ {

25 weight: 6.0,

26 edgeType: ’EMAIL ’,

27 source: 39827736,

28 target: 39761932, } ],
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29 }

30 }

Typical queries against this temporal vertex profile might be one of the following:

”Retrieve the current name of profile 39827736 ?” This question can be answered by

applying temporal preference. This can be executed by finding the name property

starting in the youngest time-frame. Search stops when the most recent name property

was found.

A temporal graph Gt instance in this model is defined by a set of temporal maps one

for each vertex in the graph such that Gt = {M1,M2,M3, . . . ,Mn} and n denotes the

number of vertices in the graph.

On top of this definition of a temporal graph queries concerning more than a single

vertex can be executed. ”What is the edge-weight for e-Mail from profile 39827736 to

39761932 in the year 2015?” This query can be answered by applying set aggregation

on the property outEdges on the temporal maps describing the given profile ids which

will result in an aggregated set of all outEdges found in the addressed profiles.

3.2 Graph Partitioning Strategies

The presented framework aims to handle temporal graphs that grow very large in size

such that it is not feasible to handle data and processing on a single computer. This

means that the temporal graph needs to be distributed on multiple compute nodes. A

large-scale temporal graph in general can be split along two dimensions. Firstly it can

be split along the temporal dimension. This is especially useful if data is to be analysed

in predictable time-frames and if older data become obsolete over time. Secondly a split

in a temporal graph can be structural as grouping certain vertices of the graph together

in a partition. This form of splitting is useful if possible application scenarios require

analysis of non-predictable time-frames on the whole time period under observation.

In this work structural partitioning was chosen over temporal partitioning since (1)

proven algorithms exist for graphs partitioned in such a way, and (2) because the

analysis time-frames in the important application domain of social network analysis

are hard to predict.

The problem of how to split a given graph into a number of partitions is called graph

partitioning in graph theory. In chapter 2 related work to this problem is described

in greater detail. In graph partitioning the task at hand is to find optimal splits in a

graph where the optimization goal most often refers to minimizing the number of cross-
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Figure 3.1: Splits in Structural Graph Partitioning

partition arcs while still maintaining similar sized partitions. This is done under the

assumption that in many graph algorithms often neighbouring vertices are used during

computation. Thus a high number of cross-partition arcs can have severe penalty on

the execution time of such algorithms.

Figure 3.1 shows a comparison of two different splits in a graph. In the first case a non-

optimal split is shown. The found split cuts through two arcs whereas in the optimal

split only one cross-partition arc is needed. Further the non-optimal version is also

imbalanced in terms of partition size.

Finding optimal partitions is not in the focus of this work. The framework discussed in

this thesis uses partitioning themes from other authors and applies them when distribut-

ing a temporal graph over a given number of computers. This is done by computing

the partitioning function for each newly created vertex vx ∈ Gt as in P = p(Gt, vx,m).

The parameter m refers to the partition priority which needs to be evaluated by the

partitioning function to determine if the computed partition number will be used as

the primary/master partition for the vertex to be stored, or will be used for any of

the backup partitions where a copy of the vertex is stored for fail-over. The partition-

ing function can be re-evaluated at any time such that in cases where the number of

partition changes the distribution of vertices can be rebalanced.

In a distributed computing environment an optimal function p is one that can be

implemented without global knowledge of the complete temporal graph. In a perfect

scenario the parameter Gt can be omitted altogether. Computing the partition number

for any given vertex only knowing the vertex profile vx itself can be achieved through

three strategies:
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• Computing functions over vertex local information,

• lookup-maps that are compact enough to be distributed efficiently in the compute

cluster, and

• partitions to be filled sequentially during graph loading.

In the case of functions the partition assignment is computed through a function from

properties found in the vertex profile. One such popular function would be to compute

modulo over the vertex identifier. Under the assumption that vertex ids are assigned in

a linear manner this will lead to a situation where vertices are evenly distributed over

the available partitions. This comes with the cost of creating non-optimal splits and

thus loosing performance during algorithm execution.

Other functions could analyse whichever attributes of the vertex profile. In a social

networking scenario the age of the users, their current location, and similar attributes

could be used to create partitions based on attribute clustering. Depending on the

attribute chosen for clustering sometimes semi-optimal splits will be found.

To get better partitioning schemes aligned with the task at hand (i.e. clustered schemes

in social network applications) fast and distributable lookup maps can be used. These

lookup maps are generated and updated by a global algorithm in a defined time interval.

The resulting lookup table can be used to determine the partition number for any given

vertex profile in the system.

However, in this scenario assigning partition numbers to newly added vertex profiles

becomes more difficult. In the proposed framework it would be possible to just use a

static partition number for new profiles i.e. just adding all new vertices to partition 0

and waiting for the next update run to re-locate improperly located vertices to a fitting

partition.

On the other hand it is also possible to introduce an additional oracle function o which

creates a good guess on where to place the new vertex. Assuming that for a newly

added vertex arcs connecting it to the rest of the network are already available, a good

guess will be to assign the new vertex to the partition which it is strongest connected

to.

A final strategy for graph partitioning that can be used is to fill all partitions sequen-

tially. Let us assume that for each partition living on a certain computer there is

a optimal maximum of vertices that can be handled efficiently on a single partition,

and let us further assume that all new vertices added to the system get their vertex
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identifier assigned in a sequential manner. If these conditions are met, a partitioning

strategy can just sequentially fill every partition to the optimal maximum. In this case

the partitioning function P can be implemented based on the delimiting values (min,

max) of the vertex identifiers for each partition.

For the aforementioned partitioning functions P it is important that they can be evalu-

ated in vertex local context with and hopefully minimizing the time to compute it. As

the following sections will unfold the function P will be used regularly during compu-

tation in the framework and thus may impose a huge performance penalty on running

algorithms.

Further, partitioning strategies that often require re-organization of the partitions can

and will also have bad impact on the overall systems performance. Not only can

re-organization cause high workload (computing, network, and data-access) on a dis-

tributed system but as per the current design during re-organization all other algorithm

execution is being stalled.

One advantages that comes with representing vertices in temporal maps as described in

the previous section is that vertices are self-contained. The document or map describing

a vertex contains all attributes of the vertex itself but also contains all link information

that connects the vertex to other elements in the network. Thus the vertices are mobile

in those cases where migration of vertices from one to another partition is absolutely

required. This is the case when computing resources and thus partitions are added to

the underlying computing system (up-scaling) or when partitions are removed from the

system (down-scaling or node-failure). If during a re-organization run vertices need to

migrate from one to another partition it is sufficient to move the map describing the

vertex to the new target partition. In respect of the properties a partitioning function

should have, re-organization runs can be performed locally for each partition. When

instructed to reorganize the partitions are inspecting all their locally stored vertices with

respect to the partitioning function P . For all vertices where P computes a partition

id which requires to migrate the vertex in question the old partition can instruct the

new partition to store a copy of the vertex. The vertex can be deleted from the old

partition once the new partition confirms successful migration.

The current state of the presented prototype supports the integration of more complex

partitioning schemes. As of now only the modulo scheme is implemented. For very

large scale graphs modulo partitioning is also very appealing since exact and optimal

solutions to graph partitioning show very bad worst-case runtime behavior. As already

discussed in the preliminaries (see 1.3.3.2) exact solutions based on the Girvan-Newman

[85] approach require prior computation of betweenness centrality which as of now is
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computed fastest with the algorithm of Brandes in O(nm+ n2logn) [14] which clearly

does not scale for very large graphs (large n).

3.3 Parallel Computing Models

It is a clear goal of this thesis to show that efficient processing over large scale temporal

graphs is possible by implementing algorithms on top of distributed computing models.

This means that for the temporal maps described in section 3.1 which can be scattered

over many computers as per the partitioning strategies discussed in 3.2, efficient parallel

and distributed computing models need to be found. The following will reflect on basic

parallel and distributed computing models and their application on graph and temporal

graph data.

Traditionally problems in the domain of graph data and moreover in the domain of tem-

poral graph data have been addressed using parallel algorithms. Observing the arena

of graph algorithms one sees many algorithms where even the most naive implementa-

tions of basic algorithms such as centrality measures and path following algorithms can

easily be run in parallel. They can be implemented to not pose any form of referential

data dependency such that issues with locking can be reduced to a minimum. General

distinctions between the different parallel computing models can be made regarding a

global memory being available to all processing units further referred to as a shared

memory model, or memory and processing units being distributed into several indepen-

dent machines. In the latter case some form of communication network is necessary to

allow for data exchange between the processing units.

3.3.1 Shared-Memory Model

In a shared-memory model all processing units (processors) have access to the same

shared memory. Such that every processor can read and write any memory block of the

complete dataset. This architecture is found in many modern multi-core computers.

Since memory is typically a limited resource in a computer blocks of data can be written

to hard drives such that a virtual memory exceeding the size of the real installed memory

can be provided to applications. Still it is required that the whole model of the problem

domain to fit into this virtual memory.

Graph processing algorithms running on shared-memory model often use adjacency-

matrix representation for the graph data. There exist memory organisation models
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capable of storing sparse matrices in memory which allow sparse graphs to be stored

with a vastly better memory footprint than O(n2).

One of the main difficulties with shared-memory models (not limited to graph process-

ing) is that there also need to be proper locking mechanisms in place that ensure write

operations can only be executed by a single stream of operation at any time. This lock-

ing obviously diminishes some of the benefits of parallel computing; processors waiting

on locks are stalling.

3.3.2 Parallel Message-Passing Model

In order to overcome the limitations of shared-memory models (limited memory, lim-

ited number of processors per computer) so called shared-nothing infrastructures can

be used. In a shared-nothing system individual computers each equipped with a cer-

tain number of processors and local memory are interconnected via a communication

network. The communication network allows the individual computers to exchange

messages during the course of algorithm execution.

The most important standard with several implementations is the Message Passing In-

terface (MPI) [41]. In MPI a usually fixed number of computers are connected through

a communication network each computer executing the same program. MPI programs

usually consist of a data distribution, computation and tear-down phase. At first the

data in question is uploaded and distributed in the compute cluster. Then the individ-

ual computers perform computation on their local portion of the dataset while mutually

exchanging messages that transport results, and algorithm execution information. Ex-

change of messages is also used for synchronisation, this is obviously not removing

the general problem of processors stalling in wait cycles, however locking becomes an

implicit function of the algorithm.

Traditionally MPI infrastructures are designed for high-performance computing work-

loads such that defined sizes of compute clusters are used. This is why the interfaces

themselves are designed for static setups where the number of compute nodes partici-

pating in computation is fixed. Newer versions of MPI allow for dynamic scaling of the

compute cluster, however the software developers need to address changes in the size of

the compute cluster in their algorithms to benefit from scaling up clusters. If compute

nodes fail intermediate results from the node are lost which oftentimes means that the

algorithm has to be started from scratch.
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3.3.3 Dynamic Message-Passing Model

In modern computing environments oftentimes cloud computing forms the basis layer

of data-centers. This means that the exact communication structure is unknown to the

resource consumer. Network topology, workload, and VM load balancing can and will

change over time such that a dynamic message-passing model that is capable of adapting

to current workload is desirable. Such dynamic message passing models are available

in the form of modern Big Data processing frameworks. Currently Big Data batch

processing based on the MapReduce [23] paradigm and Big Data stream processing

frameworks such as Storm 1 and S4 2 are state-of-the-art.

MapReduce frameworks allow for compute and storage nodes being added to and re-

moved from the system at any time. During processing phases MapReduce algorithms

iterate through the defined phases of read (reading input files), map (mapping input

data to key value pairs), shuffle (message passing phase that aggregates all key value

pairs with the same key on a single compute node), reduce (aggregates key value pairs

according to their key), and write (writing results back to disk). MapReduce systems

write all their intermediate results to distributed disk storage such that in the case of

node failure (or just a node being removed from the system on purpose) a checkpoint

state of all computation is available and the system can continue to execute with only

minor delays.

Stream processing frameworks however are closer to frameworks implementing the MPI

standard. A number of computing elements performs local computation and is able to

communicate with other computing elements for data exchange and synchronisation

through the use of messages. Stream processing frameworks however are dynamically

scalable in the sense that the exact topology of roles to be assigned to individual com-

puters and processors is delegated to the computing framework. Developers implement

their algorithm in writing the local computation for individual processing elements and

describing how data is to be sent from one processing element to another. This descrip-

tion is often referred to as the topology. In contrast to MPI based systems the concrete

execution of the topology is defined by the framework on runtime. Parameters such

as load, network latency, and rules defined in the topology are used to determine an

execution plan which is also re-evaluated on regular basis.

1Storm: http://storm-project.net
2Apache S4: http://incubator.apache.org/s4/

http://storm-project.net
http://incubator.apache.org/s4/
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Figure 3.2: Schematic of Compute Aggregate Broadcast Computation

3.3.4 Compute Aggregate Broadcast Computing

One option to reach a truly dynamic message-passing model where the multi-computer

is able to automatically adapt to current workloads is by applying a compute aggre-

gate broadcast (CAB) regime [63]. This regime results in a clear partitioning of the

computational workload to be performed by an algorithm. Compute phases refer to

local computation, aggregation to the collection of results from individual computers

and aggregating them into a global result, and finally broadcasting new data and tasks

to all nodes of the multi-computer.

The clear structure inherent in this model leads two the following advantages. First of

all synchronisation is implicit which means that developers writing payload algorithms

in a CAB model can focus on the actual algorithm and synchronisation can be handled

by the framework. Further the clear phases of this computing paradigm leads to easy

traceability of the overall system’s status by the managing framework. When a global

system state is available maintenance operations such as resizing the compute cluster,

reacting to failed compute nodes, and monitoring operations can easily be introduced.

The computation framework presented in the following paragraphs follows the CAB

paradigm. Computation is split into local computation that is executed in the context

of a single vertex of a graph. An aggregate phase which aggregates intermediate results

stored by individual computers in local intermediate result maps, and a broadcast phase

which broadcasts aggregated intermediate results to all nodes and then either instructs

all nodes to continue with the next iteration of computation, or in the case the algorithm

run has reached its defined end instructs all nodes to halt the algorithm.

A computational model that follows the CAB regime is the bulk synchronous processing

(BSP) model which was first described in detail in [118]. A BSP system operates by

performing a sequence of supersteps which are processed in parallel in a distributed

computer. The distributed computer can be imagined as a virtual machine with a set of

processors. Each of which is equipped with private memory. The processors can interact

with each other using a communication network. In theory the processors are mutually

connected with point-to-point communication channels. Algorithms in BSP strictly

follow the CAB regime as illustrated in figure 3.2. Parallel local computation phases are
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followed by global communication and a barrier synchronisation before further iterations

of supersteps are scheduled.

To implement message passing in theory each processor has an outgoing and an in-

coming message pool. During local computation the processor can add messages to

the outgoing message pool and can consume messages from its incoming message pool.

Practical implementations (such as the one discussed in this thesis) use a communi-

cation medium that operates in parallel to the local computation phases such that

the actual execution time for the global communication phase can be reduced to a

minimum.

The model through the barrier synchronisation guarantees that any superstep t + 1

can only be executed after all tasks of the preceding superstep t have completed. This

is in contrast to the LogP [22] distributed programming model. LogP starts of with

the same basic model of a distributed computer with a set of sequential processors

and a communication network. In contrast to BSP there is no explicit synchronisa-

tion mechanism. Processors in this model can either be in an operational or stalling

state. Operational processors can perform local computation or submit messages to

other processors through a communication channel. Outgoing messages are delivered

through the communication network as quickly as possible and stored at the destina-

tion processors incoming message buffer. A processor is in stalling state while outgoing

messages are in transit and continue in operational state once delivery is confirmed.

In conclusion the LogP model is an asynchronous model whereas BSP is an explicitly

synchronous computing model.

In formal analytics it was already shown that a LogP model can be simulated through

BSP and vice-versa. Such that in any given distributed computation scenario either

model can be chosen. Factors such as the general performance and simplicity of algo-

rithm formalisation need to be taken into account when selecting a model. In mutual

simulation BSP and LogP did not show any significant formal performance advantages

or disadvantages such that the general simpler algorithm formalisation in BSP gives

advantage for this model [12].

3.4 Distributed Temporal Graph Processing

In figure 3.3 the basic building blocks of the proposed computing framework and their

interplay are shown. Implementations of the framework run on top of distributed

compute clusters which are built from compute nodes that are either acting in the role

of a master node or in the role of a worker node. The master node is providing an
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Figure 3.3: Basic building blocks and their interplay

interface to prospective clients of the framework and constantly monitors the whole

compute cluster for possible worker node failures. The master node also keeps track of

all partitions in the cluster and the worker nodes handling these partitions. Further,

the master node keeps a list of all running jobs in the cluster and stores part of their

intermediate results, specifically the intermediate state of the global result. The master

is capable of assigning new jobs to worker nodes. These jobs are then executed in the

compute, aggregate, broadcast paradigm [63] which leads to implicit synchronization

steps during the aggregate phase. The master has further control over jobs such that

they can be paused after each synchronization step, and canceled completely if an error

occurred or if requested by a client.

Worker nodes on the other hand are responsible for hosting graph data and executing

jobs on this data. This means that each worker node is responsible for one or more

graph partitions and executes compute jobs on its local partitions as assigned from the

master. Since modern computers are usually equipped with multiple processors worker

nodes are capable of running multiple processing threads in parallel, these processing

threads are called slots in the architecture. One slot refers to one graph partition and

can strictly process in the scope of the assigned partition only.

The data model used is vertex centric as opposed to a matrix based model often used in

other work [53]. The vertex centric model is used because it allows for easier distribution

of graph data over many partitions and as discussed earlier in section 3.2 also for easier

vertex migration during cluster reorganisation. In this model the arcs are stored as
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part of the vertex profile and thus each arc needs to be stored twice, once at the

originating vertex and once at the destination vertex. Since the system is operating

on temporal graphs each data element in a vertex profile is a temporal element that

has a timestamp marking the begin of its existence. Consequently this is also true for

arcs and edges. Framework-users are able to specify the resolution of timestamps in

the system in order to adapt analysis granularity on the time scale according to an

applications requirements i.e. in some cases data condensed on daily basis might be

sufficient whereas in other application data needs to be available on a hourly basis.

A single cluster instance can host many temporal graphs at once. Each instance of a

graph is uniquely identified by a label which is called its namespace. This allows for

applications to be implemented where the result of an algorithm i.e. graph clustering

algorithms, is again a graph and the resulting graph is even capable of linking back to

the original graph such that the relation between original data and computed data can

be represented in the system. Again in the case of graph clustering algorithms this can

be especially useful for algorithms that compute a hierarchy of clusters [25, 64, 19, 85].

All components of the system are using a communication protocol to directly exchange

control and data messages. In general there are three types of messages:

• direct master to worker or worker to master control messages such as messages

that regularly check the clusters health status and messages that distribute the

current partitioning scheme in the cluster as explained in section 3.2,

• partition specific control messages that are either broadcast to all slots or auto-

matically routed to a certain slot such as the add-arc command, and

• vertex to vertex messages that are used during job execution to exchange data

between vertices as explained in greater detail in section 3.4.1.

3.4.1 Pregel-style Job Execution

In vertex centric graph systems as in the present work also vertex centric processing

paradigms have proven to be successful and moreover very scalable. One of these

systems is Pregel [73] which is a system for large scale graph processing implemented

at Google. It follows the bulk synchronous processing paradigm as discussed in section

3.3.4 Pregel is in the class of graph parallel distributed computing frameworks. The

underlying assumption is that there exists a compute function c(v,Γ) which is executed

in parallel for all vertices. Parameter v refers to the vertex the function is to be executed

on and Γ denotes a local copy of global memory that contains i.e. configuration variables
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and global results. As visible from the functions signature c needs to be implemented in

a way such that the compute function is able to access vertex local data only. This means

that data access to other vertices needs to be implemented through message passing

mechanisms. In Pregel-style frameworks there exists a function m(vt, x) which can be

used to send any arbitrary message x to any other vertex in the system. Computation

in Pregel-style frameworks is modelled after a compute aggregate broadcast regime.

This leads to systems that perform their computation in steps, these steps are called

superstep in Pregel. As the system global variable t that progresses through supersteps

a Pregel-style computing framework is able to guarantee that vertex messages generated

and sent in time-step t are to be delivered to its recipient exactly at time-step t+ 1.

Also inherent to Pregel-style computing frameworks is a global halting mechanism

which is used by algorithms to define a algorithm-halt behavior. Since neither the

master nor any of the worker nodes have a global and complete view of the graph and

the execution states, also the decision as of when to halt algorithm execution needs

to be a distributed decision. The halt mechanism is implemented by a voting scheme

where each and every vertex can vote for halt after executing function c. Technically

the vote-to-halt can be implemented as the return value of c. Pregel-style frameworks

will continue to execute until all vertices have voted to halt the algorithm and there

are no more vertex-to-vertex messages to be delivered.

Distributed computing systems implemented in the way described above can be classi-

fied as multiple-instruction, multiple-data (MIMD) systems according to Flynn [32].

3.4.2 Extensions over Pregel

The presented framework is inspired by Pregel in many aspects but the concept was

extended for functions to perform a global computation after each step (global), to

perform coordinated initialisation init, and mechanisms to handle temporal graphs

i.e. processing can be performed in sliding time windows which allows for dynamic

properties of graphs to be calculated. These extensions are implemented in the following

way.

Global computation is implemented by executing the function γ(Γ) on the master node

between each superstep. This global computation step can be used to aggregate in-

termediate results and avoids work-around solutions where the function γ needs to be

implemented as part of location computation in c. For initialisation another function

κ(Γ) is executed before anything else also in the global context on the master node.

Function κ can be used to initialize the algorithm with configuration parameters.
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For local computation the function c already known from Pregel is extended by a new

parameter θ which is used to described the time-frame the current algorithm execution

run is being bound to. The method signature for temporal Pregel thus looks like

this: c(v,Γ, θ). The parameter θ is used inside of c to properly address data from the

corresponding time-frame using the mechanisms provided by the underlying temporal

map.

Further the framework is also different in the aspect that it does not allow for graph

mutations during algorithm execution, which is a valid restriction in many application

areas of temporal graphs such as social network analysis where one can assume that

information from the past is rarely ever changed.

Compared to the original Pregel implementation the framework presented here also

provides mechanisms to store data in the distributed cluster and allows developers to

use and implement many different partitioning algorithms. Graph partitioning is not

part of the original Pregel specification, the assumption is that graph partitioning was

done prior data analysis and data is already stored in a partitioned fashion on top of a

distributed file-system.

The Pregel-style computation framework discussed here extends the concept by a

multiple-phase algorithm execution concept. Oftentimes graph algorithms are built

from multiple building blocks. See for instance the computation of maximum flow [100]

which consists of a forward and a backward phase or the famous Clauset, Newman,

Moore large-scale graph clustering mechanism [19] which is based on vertex-centrality

and arc-betweenness requires several steps to be executed before the actual cluster-

ing can be done. A rough execution plan for this clustering algorithm will have the

following phases: (1) computation of vertex-centrality for every vertex (trivial), (2)

computing arc-betweenness for every arc through counting all shortest-paths that run

through every arc, (3) iteratively remove highest ranked arcs until clusters which strong

central vertices occur.

Finally, since the computation framework discussed here is closely interwoven with an

underlying concept for temporal map storage and graph distribution also changes in

data can be used as a mechanism to automatically perform computation. Especially in

the case of temporal graphs it makes sense to compute certain metrics in certain time-

intervals or whenever data in a certain time-frame changes. The framework provides

such mechanisms in the form of triggered algorithm execution.

In figure 3.4 a state machine for the possible global system states are illustrated. Algo-

rithms submitted to the system are in the started state and will move to the init state

which executes initialization routines (function κ at the master. For instance this can
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Figure 3.4: Global State Machine

be setting up initial variables and data structures in algorithm global memory. After

init all the parallel processing phases are executed (distributed and parallel execution

of c over all vertices) which are followed by an also parallel messaging phase. If at

the end of the messaging phase the framework determines that there are no more ac-

tive vertices the algorithm instance is switched to terminated state. Otherwise a global

intermediate function (γ) is executed by the framework which allows mutation of the

global memory and then the algorithm continues which another processing phase.

3.4.3 Vertex Local Computation

In the presented framework prospective users need to write graph algorithms from a

vertex centric perspective. Processing is only possible in the local context of a vertex

by creating an implementation of the compute function c and is always restricted to

data that was recorded in a certain time window. The compute function is guaranteed

to be called for every active vertex. Vertices are active as long as they have not voted

to halt or if they have already voted to halt they become active again if they have

received messages from t − 1. The compute function receives a list of all incoming

vertex messages (x addressed to v) for the current vertex, a handle to memory to

store vertex local information (called the VertexContext), a handle to memory to store

algorithm global information (called the SuperstepContext), and a handle to the current

vertex as parameters.

As already introduced before algorithms implemented in this framework can only access

information from other vertices by sending and receiving messages. Vertices are able

to send messages to any other vertex (including themselves) if the receiving vertices

identifier is known, this means in the most cases messages are only sent along incoming

and outgoing arcs to direct neighbours. In order to allow vertices to send and receive

messages all computation is divided into steps which are also used for algorithm syn-
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Figure 3.5: Vertex Local State Machine

chronization. The master node is managing the step counter and makes sure that any

slot on any worker is executing step t + 1 only after step t has finished. If a vertex a

sends messages to vertex b in step t the framework makes sure that the messages are

routed in such a way that they are guaranteed to arrive at vertex b exactly in step

t+ 1. The user of the framework should get the impression that the algorithm for any

particular step t is executed in parallel for all vertices (although this can only be true

for graphs with a very small number of vertices).

3.4.4 Synchronisation and Halting

Each step also causes implicit synchronization in the execution of distributed algo-

rithms. After a slot has executed one step of an algorithm on all vertices of its local

partition, the slots make sure to complete routing of all messages to the corresponding

receiving partitions. After that they notify the master node that they have completed

execution. Dependent on the global execution state, the master schedules the next

execution step, cancels job execution (if an error has occurred), pauses job execution

(if cluster reorganization is necessary), or marks the job as finished when the algorithm

has run to completion.

In order to determine when an algorithm run has has come to completion the vote-to-

halt mechanism already described is in place. Figure 3.5 shows the local state machine

which is used for each vertex. By voting to halt a vertex is marked as inactive for the

current algorithm run. The vertex can only be activated again if it receives a vertex

message in the next execution step. In each execution step only active vertices are

considered and after each execution step the slots report the number of their still active

vertices back to the master node. It is then trivial to calculate the total number of

active vertices for a certain algorithm run and the master halts algorithm execution

when this number reaches 0 (all vertices voted for halt).

In figure 3.6 the timeline of an example algorithm run is displayed. It is clearly visible

that after the master node has instructed all workers to initialize they start with local

computation. Once a worker is done with its local computation it immediately continues
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Figure 3.6: Schematic of an example algorithm run

message routing and reports completion of message routing back to the master. The

master enforces a synchronisation barrier which means that all workers need to wait

until all other workers have completed message routing for the respective step. If in

any certain step (in figure 3.6 in step 3) local computation for all vertices has resulted

in a vote for halt the master is halting algorithm execution.

3.4.5 Algorithm Initialisation and Global Computation

For storing global results and returning them back to the caller of a job the framework

supports a volatile global context Γ. A local copy of the global context is available for

any vertex and the same context is used in all processing steps t of a run. This global

context is initialised once globally on the master node and then distributed to all worker

nodes participating in the computation. To perform initialisation framework users are

able to implement the κ (init) function of an algorithm which is being executed just

after creation of the global context on the master.

During local execution of c for the vertices of a slot the global context Γ is not syn-

chronised which means that the individual partitions are operating on local copies that,

after a certain step t has finished, will differ from other copies on other partitions. Only

after step t has finished executing the individual copies of Γ are sent back to the mas-

ter node where they get merged together. Since merge conflicts will occur during this

process, framework users have to specify merge strategies to be applied to certain fields

of the Γ. Such strategies might be simple numerical functions such as min and max,

but can also be more complex such as merge strategies that automatically merge sets
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of data together. Moreover users are able to implement their very own merge strategies

if the framework-provided ones are not sufficient.

After all workers have reported back from local computation and the data in Γ was

successfully merged the global function γ is called on the master node. The function

operates over Γ, the current execution step, and the number of active vertices as pa-

rameter. This allows framework users to reorganise data in the global context Γ which

would otherwise be difficult to implement without a global function.

3.4.6 Multiple Phase Algorithms

As introduced earlier the framework presented in this paper also supports the execu-

tion of algorithms in multiple phases. Such that important graph algorithms that are

traditionally built from several phases such as the maximum flow [100] and clustering

algorithms [19] can be formalised as a single, contiguous algorithm rather than execut-

ing several loosely coupled methods. Aside the benefit of better logical structure in the

algorithm, this opens up the possibility to pass intermediate and global results from one

algorithm phase on to the next phase. In practice this means that intermediate results

which at large-scale (i.e. vertex-centrality for every vertex) are difficult to gather in

global storage can continue to live in intermediate memory directly on the compute

node where this data is needed again.

The multiple phase algorithm mechanism is implemented in this framework by allowing

for special algorithm packages that wrap up a list of child algorithms that are executed

in order. Child algorithms can again be packaged algorithms which effectively allows

framework users to submit complete hierarchies of algorithms in a batch. During the

execution of the functions compute (c), init (κ) and global (γ) the respective vertex

memory for each vertex and the global memory block Γ are re-used such that results

from prior algorithm phases are available in consecutive ones.

This eliminates the need for framework users to take care of the execution phases by

themselves and allows for simpler algorithm formalisation for algorithms like maximum

flow which often consist of a forward tracing phase and a backward tracing phase.

Further this allows to apply statistical functions to the results of algorithm runs, and

simply to submit many algorithms in a batch that otherwise would have been submitted

to the cluster consecutively.
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3.5 Triggered Algorithm Execution

The aim of this framework is to be used in scenarios where ever changing networks are

to be analysed. The focus on the temporal aspect obviously leads to the requirement

of continuously analysing data. Examples for such scenarios would be network analysis

which shall be performed on e-mail log files in near real-time. In this case it is desirable

that the framework itself is aware of changes in data and automatically runs a pre-

defined set of algorithm.

The framework allows this through a mechanism called triggered algorithm execution.

The temporal data stored in the system is already allocated in time-slots according

to a user-defined time resolution i.e. hours. When continuous data processing is re-

quired triggers for each n-th completion of at time-resolution window can be configured.

Whenever a time-slot is elapsed the framework automatically checks whether or not new

data was added to the last time-slot and if so executes a user-defined set of algorithms

on this data.

3.6 Fault Tolerance and Reorganisation

As already discussed in section 3.2 partitioning functions p not only compute a primary

partition number for any vertex added to the system but can also be used to compute

secondary and backup partitions for each vertex. This secondary partition is used for

recovery from node faults. In real implementations, depending on an applications re-

quirements the number of copies to keep for each vertex can be configured. Independent

of the number of backup copies configured the following regime applies.

For the mere data partitioning the backup partitions are used to host exact copies

of vertices. In theory there are several different strategies that can be applied when

creating the backup copies, mainly depending on which level of consistency between

the master copy and the backup copies needs to be achieved.

• When full consistency between all copies is required the master node can wait for

all worker nodes to acknowledge successful write operation on every vertex profile

(the master and the backup copies). In this case all copies are the same at all

times, however, write performance will be slow because positive feedback from all

backup copies need to be awaited.

• In cases where more than one backup copy for every vertex exists a more relaxed

regime with quorum can be used. In this case the master will instruct the primary
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partition and a certain number of backup partitions to execute a given write

operation. The master will consider the write successful as soon as the primary

partition and more than a half of the backup partitions have confirmed the write.

In case of node failure and reorganisation conflicts might be the case. For each

vertex-conflict a quorum will need to decide which copy is correct.

• Finally, in scenarios where consistency is no primary goal all write operations

can complete as soon as the primary partition confirms successful write with

the risk that data is lost due to failed write operations on backup partitions or

inconsistencies that cannot be resolved after primary partition failure.

The framework uses keep-alive messaging between the master node and the worker

nodes to detect node failures. In case of a failure a reorganisation plan takes action.

In a first phase all currently executing algorithms are paused for reorganisation. After

that every slot on every worker node inspects their local partition. For each vertex in

the partition the partitioning function p is used to compute the primary and all the

backup partitions. If for any given vertex the computed partition identifiers are not

compliant with the partition the vertex is currently placed then a migration process

for this vertex is started. The migration process moves the vertex to its new target

partitions and makes sure that old copies are deleted from the now wrong partitions.

Similar mechanisms can be applied for intermediate results stored on worker nodes.

Intermediate results are either stored in vertex local memory or in global context Γ. On

master node failure the global context is lost and all algorithm execution needs to start

over. The intermediate vertex local results however can get copied to backup partitions

after successful completion of each superstep. This allows to recover from worker node

failure and to continue computation through resetting the current superstep. From the

previous description it becomes clear that for each vertex a copy of the vertex local

memory needs to be created at the beginning of each superstep this process is called

checkpointing.

Since checkpointing and creating backups of vertex local memory to backup partitions

(depending on the executed algorithm) may pose severe memory and runtime overhead

these features are optional.

3.7 Selected Example Algorithms and their Processing

To illustrate how the framework can be used by prospective developers selected al-

gorithms implemented in the framework are discussed in the following sections. A
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reference implementation (as discussed in chapter 4) for this framework was created

in Java. The algorithms described in this section were tested against this reference

implementation and thus their listings are also in the Java programming language.

However, it is important to point out that the framework does not strongly depend on

Java specific features or the accompanying API such that other implementations of the

framework can be created in other programming languages.

For the code listings given in the following sections usually only the method execute is

given which is the function c which is to be executed for every vertex. Boilerplate code

i.e. the class, field declarations, package imports, exception handling etc. are omitted

for better readability.

The presented algorithms were later used to test-drive and evaluate the framework in

applications of social network analysis and the analysis of web data.

3.7.1 Max- Min- Vertex Degree

In many applications the vertex degree also referred to as degree centrality (see section

1.3.2.1.1). Plays an important role, however absolute values for these are difficult to

compare such that the absolute values are often normalized. For normalization aggre-

gates of the vertex degree such as their minimum or maximum need to be computed.

Aggregates over vertex degree also have other interesting applications especially when

computed over a temporal graph. For instance it is and indicator for how a social

network evolves if the trends for maximum vertex degree or average vertex degree are

observed.

Listing 3.3: MaxDegree

1 private void execute(List <VertexMessage > messages ,

2 VertexContext vertexContext ,

3 SuperStepContext superstepContext ,

4 Timeframe timeframe , Vertex vertex) {

5 float degree = myDegree(vertex , timeframe);

6 float currentGlobalMaximum =

7 (Float) superstepContext.get(GLOBAL_MAXIMUM);

8 if(degree <= currentGlobalMaximum) {

9 voteToHalt(vertexContext);

10 return;

11 }else{

12 superstepContext.put(GLOBAL_MAXIMUM , degree);

13 }
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14 }

15

16 public Map <String , Reducer > getReducers () {

17 HashMap <String , Reducer > reducers =

18 new HashMap <String , Reducer >();

19 reducers.put(GLOBAL_MAXIMUM , new MaxReducer <Float >());

20 return reducers;

21 }

The algorithm for the global maximum vertex degree implemented in Java can be

found in listing 3.3 (minimum degree follows the same strategy). The listing covers two

methods (1) execute which is the implementation of the vertex local function c and, (2)

getReducers which defines the merging behavior of variables in global context Γ. On

line 5 in the listing a helper function myDegree is used to determine the vertex degree

of the current vertex. If this local vertex degree is below an already known global

maximum then the vertex votes for halt (line 9) . Otherwise the vertex will assume

that it itself is the vertex with global maximum and will write its own vertex degree in

global context Γ.

Since the algorithm operates on a local copy of the global context Γ a merge strategy

for the maximum vertex degree needs to be defined. This is done through implement-

ing the function getReducers. In the listing on line 20 a max aggregation strategy

(reducer) is defined to use the maximum value for GLOBAL MAXIMUM during the

merge process.

This algorithm has a rather a-typical implementation since the global context is used

for communication instead of using the messaging function m to send vertex-to-vertex

messages. The cluster will show only short activity for all vertices in the system and

will immediately halt.

3.7.2 Shortest Path

Another algorithm often used in applications of graph processing is the computation

of the shortest path between any two vertices. The computation of all shortest paths

in a graph for instance is the basis for calculating betweenness centrality and is a

fundamental metric used in graph clustering.

In the following a distributed temporal implementation of a shortest path algorithm is

discussed. This algorithm takes the vertex ids of the start vertex and end vertex as its
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input and uses the Pregel-style processing framework to filter the shortest path from

all possible paths. As clearly visible in the source listing in 3.4 there are two different

branches a single vertex in a single iteration can take in this implementation.

Seeding (see lines 13 to 24) is executed on the first iteration in the context of the

start vertex. This code branch creates a new PathLength object which is a simple

Java object to hold the already visited path components and their overall length.

This object is wrapped up in a message and sent to every neighbor of the current

vertex through all out-going edges.

Intermediate Vertex: On all other iterations of the algorithm all other vertices in the

graph will iterate over all received messages from other vertices. Once a vertex

receives a message a first check will determine if the current vertex is the end-

vertex (line 34) of the path specified in the received message. If this is not the

case the current vertex must be an intermediate vertex. The vertex will check

whether or not it is already in the given path. If it is already on the path a

loop was detected (see line 42) and no further action is required. Otherwise the

current vertex will add itself to the Path of the PathLength object and continue

by propagating the modified PathLength object to its neighbour vertices along

outgoing edges (lines 43 to 52).

End Vertex: If the current vertex is the end-vertex of the path then a check in global

context will be made to figure out whether or not the current path is shorter than

a already found shortest path, and the last global result will be overwritten by

the new PathLength object.

Inactive: The last branch in the listing (line 57) is executed by all inactive vertices.

Those that did not receive any messages and are neither the start nor end vertex

of the path. In these cases the algorithm votes for halt such that once all messages

in the cluster have been processed the algorithm runs to completion.

Listing 3.4: ShortestPath

1 public void execute(List <VertexMessage > messages ,

2 VertexContext vertexContext ,

3 SuperStepContext superstepContext ,

4 Timeframe timeframe , Vertex vertex) {

5 long startPathVertexId =

6 (Long) superstepContext.get(PATH_START);

7 long endPathVertexId =

8 (Long) superstepContext.get(PATH_END);

9 boolean seeded = false;

10 if("true".equals(vertexContext.get("Seeded"))) {
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11 seeded = (boolean) vertexContext.get("Seeded");

12 }

13 if(! seeded && vertex.getId () == startPathVertexId) {

14 if(vertex.getOutEdgesReading () != null) {

15 for(Edge out:vertex.getWeightedOutEdgesReading(

16 "any", timeframe)) {

17 PathLength pl = new PathLength ();

18 pl.start = startPathVertexId;

19 pl.end = endPathVertexId;

20 pl.visited = new Path();

21 pl.visited.add(pl.start);

22 sendMessage(out.getTarget (), pl);

23 }

24 }

25 vertexContext.put("Seeded", true);

26 }else{

27 if(messages.size() > 0) {

28 int shortestPath = Integer.MAX_VALUE;

29 if(superstepContext.get(SHORTEST_PATH) != null) {

30 shortestPath = (Integer) superstepContext.get(

SHORTEST_PATH);

31 }

32 for(VertexMessage m:messages) {

33 PathLength pl = (PathLength) m.getBody ();

34 if(pl.end == vertex.getId()) {

35 if(pl.visited.length () < shortestPath) {

36 superstepContext.put(SHORTEST_PATH ,

37 pl.visited.length ());

38 superstepContext.put(SHORTEST_PATH_DESC ,

39 pl.toString ());

40 }

41 }else{

42 if(!pl.visited.contains(vertex.getId())) {

43 if(pl.visited.length () < shortestPath) {

44 pl.visited.add(vertex.getId());

45 if(vertex.getWeightedOutEdgesReading("any",

timeframe) != null) {

46 for(Edge out:vertex.

getWeightedOutEdgesReading("any",

timeframe)) {

47 if(out.getTarget () != m.getSourceId ())

{
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48 sendMessage(out.getTarget (), pl);

49 }

50 }

51 }

52 }

53 }

54 }

55 }

56 }else{

57 voteToHalt(vertexContext);

58 }

59 }

60 }

This algorithm is a path following implementation that will show a behavior of having

only one active vertex in the beginning that changes rapidly to a very active cluster

once the initial seeding has resulted in a state where many copies of PathLength objects

are in transit. The load will then go down as the algorithm converges towards finding

a result.

The implementation given in 3.4 will not halt for queries where the start and end vertex

are on different communities in disconnected graphs and moreover for queries where

the given end-vertex is non-existent. For these cases a simple upper boundary on the

path length can be used to make sure that also in these cases the algorithm runs to

completion.

3.7.3 Page Rank

The next algorithm discussed in this section is PageRank [89] which was famously used

(and with many modifications still is) at Google to drive the ranking algorithm for their

web graph. A stripped down implementation of its compute function implemented in

the presented framework is given in listing 3.5. As discussed in the original paper

PageRank is an iterative process that assigns a rank to each vertex in a network. The

algorithm initialises the rank for each vertex with a fixed constant, in our case 0.25.

After initialisation each vertex broadcasts its own rank multiplied by a damping factor

(in our case 0.85) and divided through the number of neighbours to its neighbors (see

listing lines 9-19). For any other iteration t of the algorithm each vertex sums up the

rank values received from its neighbors in iteration t−1 and sets the sum as its new rank

and broadcasts this rank with exactly the same formulae as used during initialisation

process (see listing lines 21-42). The algorithm votes to halt if a number of maximum
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iterations was reached (listing lines 5-8) or does so implicitly if only little change to the

values is detectable defined by a swing threshold.

After a certain amount of iterations the algorithm converges towards an optimal PageR-

ank distribution which can be used to sort pages in search results. Pages or vertices

which have a higher PageRank have more inbound links from other highly valued pages

compared to other with only few inbound links from perhaps lower ranked pages. It is

quite save to assume that those pages with high PageRank are more important.

Listing 3.5: PageRank

1 public void execute(List <VertexMsg > messages ,

2 VertexContext vertexContext ,

3 SuperStepContext superstepContext ,

4 Timeframe timeframe , Vertex vertex) {

5 if(this.getStep () >= PageRank.MAX_ITER) {

6 voteToHalt(vertexContext);

7 return;

8 }

9 if(this.getStep () == 0L) {

10 setPageRank(vertexContext , PageRank.INITRANK);

11 Collection <Edge > outEdges =

12 vertex.getWeightedOutEdgesReading("any");

13 int numberOfOutEdges = outEdges.size();

14 float outRank = (pageRank * PageRank.DAMP) /

numberOfOutEdges;

15

16 for(Edge out : outEdges) {

17 sendMessage(out.getTarget (), outRank);

18 }

19 }else{

20 if(messages.size() > 0) {

21 float changedby = 0.0f;

22 float sumIncomming = 0.0f;

23 for(VertexMessage m : messages) {

24 Float incomming = (Float) m.getBody ();

25 sumIncomming += incomming.floatValue ();

26 }

27 changedby = setPageRank(vertexContext ,

28 sumIncomming);

29 if(changedby >= PageRank.SWING_THRESHOLD) {

30 Collection <Edge > outEdges =

31 vertex.getWeightedOutEdgesReading("any");
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32 float pageRank = getPageRank(vertexContext);

33 float numberOfOutEdges = outEdges.size();

34 float outRank = (pageRank * PageRank.DAMP) /

numberOfOutEdges;

35 for(Edge out : outEdges) {

36 sendMessage(out.getTarget (), outRank);

37 }

38 }

39 }

40 voteToHalt(vertexContext);

41 }

42 }

Compared to the other algorithms discussed in this chapter the PageRank implementa-

tion is the perfect fit for the distributed computing model discussed here. Compared to

the other algorithms PageRank have all vertices actively contributing to computation

until algorithm halt.

3.7.4 Label Propagation Community Detection

The final algorithm discussed in this section is an implementation of a simple label prop-

agation community detection algorithm originally developed by Raghavan et al. [94].

It is known to to provide good quality communities in near linear time. Although the

initial design of the algorithm is a synchronous process of neighboring vertices exchang-

ing community labels, the very same algorithm can be implemented as an asynchronous

process and thus fits the Pregel-style distributed computing paradigm very well.

Initially the algorithm assumes, that every vertex v lives in its own community. The

community label assigned to each vertex is the vertex identifier. In the case of Dy-

namoGraph this would be a long number (see figure 3.7a for the initialized state of a

simple graph). In each consecutive iteration of the algorithm each vertex observes the

community label of its neighbours and takes over the label that most of its neighbours

currently hold. Variants of the algorithm also consider the edge weight. In the case

that multiple community labels are candidates (i.e. all community labels occur exactly

once) the smallest community label is chosen.

In figure 3.7b the graph is shown after the first iteration of label propagation. It is

already visible that in the left community the label 0 was chosen often and in the right

community the label 6. So it comes with no surprise that in the consecutive executions
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Figure 3.7: Four iterations of the label propagation executed over a simple graph with
clear community structure

t = 2 and t = 3 (as shown in figures 3.7c and 3.7d) the labels 0 and 6 push trough and

two communities are formed.

In the given example the algorithm converges towards good communities in only three

iterations. It is also clear that if the algorithm was to continue to execute further

iterations, the community labels would remain unchanged. The communities found in

this graph also refer to the communities a human observer would detect.

The presented algorithm has been shown to give good results on sparse graphs as found

in popular application areas such as social network analysis and web-graph analysis.

Listing 3.6: Label Propagation Community Detection

1 public void execute(List <VertexMessage > messages ,

VertexContext vertexContext , SuperStepContext

superstepContext , Timeframe timeframe , Node node) {

2 if(this.getStep () == 0L) {

3 this.setVertexLabel(vertexContext , node.getId());

4 propagateVertexLabel(node , vertexContext);

5 }else if(this.getStep () >= MAX_ITERATIONS){

6 node.getKeyValueWriting(timeframe.getStart ()).put(

CLUSTER_ID_ATTRIBUTE , this.getVertexLabel(

vertexContext));

7 voteToHalt(vertexContext);

8 }else{

9 Map <Long ,Integer > count = new HashMap <Long ,Integer >();

10 for(VertexMessage m : messages) {

11 Long clusterId = (Long) m.getBody ();
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12 if(!count.containsKey(clusterId)) {

13 count.put(clusterId , 1);

14 }else{

15 Integer currentCount = count.get(clusterId);

16 currentCount ++;

17 count.put(clusterId , currentCount);

18 }

19 }

20 Long maxClusterId = null;

21 Integer maxClusterCount = 0;

22 for(Long clusterId : count.keySet ()) {

23 if(maxClusterId == null ||

24 count.get(clusterId) > maxClusterCount) {

25 maxClusterId = clusterId;

26 maxClusterCount = count.get(clusterId);

27 }

28 }

29 if(maxClusterId != null) {

30 setVertexLabel(vertexContext , maxClusterId);

31 }

32 propagateVertexLabel(node , vertexContext);

33 }

34 }

35

36 private void propagateVertexLabel(

37 Node node , VertexContext ctx) {

38 Collection <Edge > outEdges = node.getOutEdgesReading ();

39 Collection <Edge > inEdges = node.getInEdgesReading ();

40 List <Long > candidates = new ArrayList <Long >();

41 if(outEdges != null) for(Edge e : outEdges) {

42 if(! candidates.contains(e.getTarget ())) {

43 candidates.add(e.getTarget ());

44 }

45 }

46 if(inEdges != null) for(Edge e : inEdges) {

47 if(! candidates.contains(e.getSource ())) {

48 candidates.add(e.getSource ());

49 }

50 }

51 for(Long l : candidates) {

52 sendMessage(l, this.getVertexLabel(ctx));

53 }
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54 }

In listing 3.6 a naive implementation of the label propagation algorithm is presented.

Each vertex in iteration t = 0 reads its own vertex id and stores it in vertex local

volatile memory which is abstracted by the method call setVertexLabel(). This be-

havior relates to the initialisation procedure discussed before (see lines 2-3 in listing

3.6). Immideately after initialisation has completed the vertex sends its current com-

munity label to all of its neighbors for the first time. This is done in the subroutine

propagateVertexLabel().

The method propagateVertexLabel() (see lines 36-54 in listing 3.6) collects all edges

(in and out) of the vertex and stores the vertex id of the neighbor connected through

these edges in an array called candidates. The algorithm then sends the vertices’

current community label to all these neighbour candidates through a message passing

call (see line 52). Obviously depending on the exact use-case the label propagation can

consider the edge-weights, ignore certain edges depending on arbitrary edge attributes,

and moreover only work over out- or in-comming edges to follow the structure of a

directed graph. Methods for these alterantives were created and tested but are not

given in the written work for better readability.

In consecutive iterations of the algorithm community labels from neighbors are received

(see lines 9-32) for processing. The algorithm counts the individual community labels

received from neighbours using a HashMap. It then proceeds to find the label received

most often which is the new community label for the vertex. After a new community

label was determined again the method propagateVertexLabe() is used to distribute

this label among the vertices’ neighbours.

After a user defined number of iterations (see constant MAX_ITERATIONS and code from

lines 5-7) the algorithm copies the community label from the volatile vertex local mem-

ory which is only available during algorithm execution to a vertex attribute and votes

to halt algorithm execution.

3.8 Query Methods Implemented as Supersteps

A special form of algorithms to be run against the framework are queries. Queries can

be implemented using the mechanisms described in this chapter, they are just special

forms of distributed algorithms which can have a generic implementation since the

features can be used in many different applications.
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Queries are often used from client applications to interact with the distributed cluster.

Assuming an application for social network analysis a common task for its users will

be to visualise and interact with (parts) of the analysed graphs. Let us assume for a

certain metric such as PageRank the highest ranked vertices and their neighbors are

to be visualised. In this case the client application will run queries against the existing

dataset to retrieve graph data from the backend system.

3.8.1 Single Vertex Retrieval

The simplest query one can think of is finding a certain vertex by its known vertex

identifier. This can be easily implemented by writing a compute function c that finds

the vertex with the known identifier in the local partition of the graph. The result of

this query will be the full vertex profile of the found vertex.

In section 3.1 the use of temporal maps as the foundation layer for data storage in this

framework was discussed. From this section it is also clear that a temporal graph is a

map of temporal maps where the vertex identifiers can be used for vertex lookup. In

fact a faster implementation to retrieving a single vertex from the system is embedded

in the framework. Single vertex queries are handled directly by the framework through

directly looking up the vertices in the distributed partitions. This results in better per-

formance at the cost of not being able to integrate with a more generic implementation

as discussed in the next section.

3.8.2 Queries for Vertex Attributes

A further query available in the framework is querying for any arbitrary attributes of

vertices in a certain time-frame. The query is able to describe filtering against any

attributes and hierarchies of attributes found in the temporal map. As shown later in

reference implementation later in chapter 4 this functionality can be delegated to JSON

query languages such as JSONPath 3.

Mainly the following filtering mechanisms are provided:

Comparision and Equality: For any arbitrary attributes equality can be checked i.e.

the attribute name could be searched for a specific name string. For numeric

values also the typical comparison operations (equals, greater, greater-equals,

less, less-equal) can be used.

3JSONPath: https://github.com/jayway/JsonPath

https://github.com/jayway/JsonPath
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In-Operator: Collections can be checked with an in operator for inclusion or exclusion

of items with certain attributes.

For these queries naive implementations with a function c that gets executed over all

vertex profiles can be found. The result of these queries will be a list of vertices to

which the given attribute restrictions apply. Since in practice these result lists can

grow very big in size (imagine a query without any restrictions returning the complete

graph) limitations on the result size can be applied and are default.

3.8.3 Network Query Algorithms

Finally, also implemented through a generic version of the compute function c network

query algorithms can be formalised. A network query algorithm is looking up a single

vertex in the graph and returns it together with its neighbours. The query can retrieve

neighbours up to a certain depth.

The query is implemented in two phases (1) the start vertex is found which then gener-

ates a depth message that gets sent to all of its neighbours (filtered by incoming and /

or outgoing edges and their type), (2) every vertex that receives a depth messages adds

itself to the result set reduces the depth counter by 1 and sends a new depth message to

all its neighbours, this is continued until the depth counter reaches 0. All other vertices

vote to halt.

3.9 Summary

In the last sections a data-model for distributed temporal graphs along with a Pregel-

style processing mechanism was presented and discussed in detail. It was illustrated

how the concept of temporal maps are useful in modelling a temporal graph and how

this temporal graph can be partitioned over several computing instances. Different

processing paradigms in parallel and distributed computing were briefly recapitulated

and the case for compute aggregate broadcast models was made.

The presented processing model uses a vertex centric computing strategy where a cen-

tral compute function c is called in the local context of every vertex in the graph. Since

direct memory access is not possible in this paradigm vertex-to-vertex communication

mechanisms based on message passing are used for synchronisation and data exchange.

The presented processing model runs in iterations until processing at all vertices has

voted to halt. These iterations cause implicit synchronisation barriers.
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Finally some typical graph algorithms and their possible implementation on top of

the presented framework were discussed. A concrete reference implementation of the

framework itself, several graph algorithms, client applications and evaluation are to be

found in the following chapters.
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Chapter 4

Reference Implementation of the

Distributed Processing Framework

In order to show the technical feasibility of the aforementioned approach, and to test

different algorithm execution strategies, partitioning schemes and cluster configurations

a prototypical implementation was created. The prototype provides a real world imple-

mentation of the distributed temporal graph processing framework presented in chapter

3. To make the prototype usable for testing, evaluation, and real world applications

eventually also other components had to be added to the system. Such that the proto-

type also provides a full stack of temporal graph storage components, and user interface

geared towards interactive social network analysis. The chapter at hand will describe

all layers of the software stack in greater detail and will highlight how they contribute

to the overall goal of large scale distributed temporal graph computing.

The remainder of this chapter is structured as follows. Section 4.1 describes additional

requirements for a real world implementation of the framework. Section 4.2 gives a brief

overview of the general architecture and its components. In section 4.3 mechanisms for

distributed configuration and coordination and their implementation are discussed. The

section 4.4 covers how worker and master role nodes use intra-cluster communication

to route and process data and command packets and section 4.5 describes how this

mechanism is used for distributed algorithm execution. Section 4.6 discusses basic

functionality of the Client API and lists the most important API calls. One of these

API calls provides dynamic Java code loading which is explained in greater detail in

section 4.7. Section 4.8 discusses the implementation of monitoring sensors. Section

4.9 provides information on the implemented service for data persistence. Finally 4.10

sheds light on some possible improvements and section 4.11 concludes this chapter.

This chapter is accompanied by appendix A which contains in depth details on the

tooling used during implementation, exact version numbers of all tools, where and how

to obtain the source code of this prototype implementation including an online reference

to up to date implementation details.
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4.1 Extended Requirements

Besides the functional requirements discussed in section 1.5 and the ideas of an ideal

temporal graph processing system presented in section 1.6 several other requirements

need to be met once a prototype implementation is to be created. The following sections

will describe these requirements of a real world implementation and provides pointers

to their realisation within the reference implementation.

4.1.1 Configurability

A first very important requirement is that the system is configurable. This requirement

is reflected mainly in two dimensions. First of all the system needs to be able to detect

changes to its topology and to automatically reconfigure if such chanes (i.e. compute

nodes are added or removed from the system) occur. This is strongly related to the

requirements of scalability and fault-tolerance (which is discussed in detail in section

4.3.3).

Second, system administrators need to be able to set basic system configuration pa-

rameters. Such parameters include the number of parallel threads to be executed on

a single compute node, the location of log files and settings for debugging algorithms.

Some of these settings (i.e. log and debug settings) should even be modifiable during

runtime. This requirement is tackled by a Java property file. This file is accompanied

by a caching in-memory implementation that reads this file on-demand and caches the

values in the file for a configurable amount of time in memory. Some configuration

parameters are marked as ”fixed” in the source code and are only read once during the

first use of the parameter.

4.1.2 Scalability

As data sets to be processed in this systems tend to grow very large in size and moreover

will keep growing over time, this processing system needs to be able to accommodate

to this and also scale. The point was made in previous section 3.3 that vertical scaling

(i.e. adding more processors and memory to a single computer) has its limitations.

On the one hand one can hit boundaries set by technical restrictions, and on the other

hand vertically scaled machines as those used for high performance computing tasks are

custom built and have a highly leveraged price point. The framework discussed in this

thesis allows to distribute data over many different machines which is called horizontal
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scaling. If storage, and processing capacity is running out new computers (compute

nodes) can be added to the system to accommodate to these new requirements.

Adding (and also removing) nodes from the system will require dynamic reconfiguration

of the system. Control instances need to be made aware of the new compute nodes to

being able to facilitate them and depending on the graph partitioning scheme currently

in action the data needs to be rebalanced. Details about the registration and de-

registration of worker nodes can be found in section 4.3.2.

4.1.3 Fault Tolerance

Strongly linked with the scalability is the requirement for fault tolerance. With adding

number of nodes to a computer the probability that any of these nodes fails rises. Thus

the system needs to be able to react to node failure.

This requirement has two perspectives, first of all the data stored on node will become

unavailable to the system. This is why the framework’s partition manager supports a

primary and a backup partition where a copy of all graph vertices is stored. On the other

hand in an active distributed computing process also computation will break and needs

to be rescheduled if a compute node fails. In section 4.3.3 the actual implementation

of node fail-over detection and recovery are discussed.

4.1.4 Multi-Tenancy

As this system can be used to analyse graph data on a distributed compute system

setup is complex and needs a little bit of planning ahead. This means that users of

this framework will not be willing to roll out an individual installation for each data

set to be analysed in the framework. It is rather the case that a single installation of

the framework is used to host several datasets possibly from different tenants accessing

the same potentially cloud based system. This leads to the requirement that multiple

tenants can host their data sets on a single installation of this system and share the

distributed computing capacities for their different analysis jobs.

This requirement is mainly addressed by the framework implementation through the

use of what is called a namespace. Namespaces can be compared to tablespaces in

traditional relational database systems however in this case they are used to distinguish

between individual graphs. A namespace is a name unique to a single installation that

names a graph dataset. All graph related tasks (adding/modifying vertices, executing
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algorithms, etc.) are always executed in the context of such a namespace such that

many datasets can co-exist on a single installation of the framework.

In commercial cloud scenarios multi-tenancy also means that a system needs to have

sophisticated and fine-grained access regulations that allow to describe which users are

allowed to access which parts of the system. Moreover in multi-tenant systems isolation

between the individual tenants is usually highly preferred. Since the prototypical nature

of the reference implementation described here is mainly used in scientific on-premise

scenarios access regulations and isolation were not implemented.

4.1.5 Monitoring

When algorithms are executed in distributed environments debugging becomes inher-

ently hard. Traditional mechanisms of step-debuggers no longer hold since it is not

feasible to step-debug on many distributed (potentially hundreds) compute nodes in

parallel. Thus ever more important is it to being able to monitor a system during vary-

ing load scenarios. System monitoring allows framework users to keep track of certain

basic system parameters such as memory usage, CPU load, disk usage. Further the

core of this system, the execution of massively parallel algorithms need to be closely

monitored. For each run the start, and end time are to be recorded and all also the

timings of all intermediate steps in-between. Further, details about the algorithm such

as the number of vertices active per step must be recorded.

In the reference implementation monitoring data is collected by background threads

running on all nodes in the cluster and sent in configurable time intervals to the master

node which keeps short back-logs of this data in memory. Monitoring data can be picked

up through API calls and thus be visualised and analysed by client applications. Moni-

toring was not a key aspect when creating this framework. The implementation of a web

based monitoring framework for DynamoGraph thus was outsourced to a supervised

masters thesis titled Monitoring and Benchmarking Toolchain for the DynamoGraph

Framework [113]. In section 4.8 the extensions of the framework for monitoring and

the inner workings of the sensors are discussed.

4.1.6 Modularity

Since this framework is developed as part of research agitations many different aspects

of the framework are to be analysed. This means re-configuration, experimentation

with new code and comparing different implementations are the norm. This leads to

the requirement that everywhere possible the contracts between system components
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are to be designed as Java service interfaces and are implemented through configurable

implementations. Examples for components for which this is true are graph partition-

ing algorithms, persistence implementations, inter-process communication, and object

serialisation to name only a few.

4.1.7 Persistence

While not necessary for network analysis per-se, during use of this framework in real

world applications the requirement for persisting data within the system becomes evi-

dent. Users in real world scenarios are not going to be willing to upload datasets over

and over whenever a cluster restart occurred. This means that the system needs to

be able to run in a mode where the graph data is not only available as an in-memory

model but is stored on persistent storage and thus survives cluster restarts. In section

4.9 the different storage models implemented in the prototype are discussed in detail.

4.1.8 Dynamic Code Loading

In a real world distributed computing framework developers as the users of such a

framework need a way of uploading their own user code to the system. The framework

needs to be able to dynamically load user provided code and execute it within the

context of the framework. Static code loading (and linking) is an impractical scenario

since this would require cluster restarts on every user’s change. In a distributed com-

puting environment cluster restarts can be a very time consuming process which is to

be avoided at all cost during day-to-day operation. In section 4.7 the implementation

of a dynamic code loader for the JVM is briefly discussed. This loader is used by the

framework to load, manage, and unload user code.

4.2 Architectural Overview

The aforementioned additional requirements lead to the implementation and selection of

components that complement the basic processing framework. This leads to an updated

architecture which is displayed in figure 4.1. The diagram shows a high level view of

a DynamoGraph deployment. Depending on the use-case alternative deployments are

possible i.e. in development scenarios all processes illustrated in the diagram could run

on the same machine, on the contrary in very large scale deployments one could decide

to run dedicated nodes for the supporting services (ZooKeeper and Cassandra).
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Figure 4.1: Architectural Overview of the Reference Implementation

In 4.1 a client application process is connecting through a public communication net-

work to the master process. The client application is directly talking to the client

API interface which is discussed in more detail in 4.6 for querying and manipulating

data stored in the system, uploading and running graph algorithms, and retrieving

monitoring data.

The MasterProcess is the component which runs on a dedicated master node. In prac-

tice the master node will often also act as a worker node since workload for this process

is relatively low. The process uses several components worth mentioning:

CodeManager: This component is a service which allows framework users to upload

code as Java JAR files. The service holds a registry of uploaded algorithms and

is capable of registering code with worker nodes.

SuperStepManager: The SuperStepManager is the component responsible for code ex-

ecution. Using the services provided by the CodeManager the SuperStepManager

is capable of starting, pausing, and stopping distributed execution.

PartitionManager: Here the implementations of partitioning functions are living. For

each namespace registered in the system a partitioning function is registered. The

PartitionManager is able to compute the partition number for any given vertex

and is able to distribute the partitioning function and partitioning table which is

a mapping of partitions to worker nodes to the worker nodes.

In addition a MonitoringService (not listed in the figure) receives monitoring data from

the worker nodes and keeps it in memory to be retrieved by client applications.

Alongside with the MasterProcess the ZooKeeper service responsible for distributed

coordination is runnning on the same host as the master node. Technically communi-



Reference Implementation of the Distributed Processing Framework 87

cation with ZooKeeper is done through TCP/IP such that the service can also run on

a dedicated host in larger setups. ZooKeeper provides a directory structure for con-

figuration parameters. Operations on top of ZooKeeper provide synchronisation and

locking-mechanisms that can be used to implement patterns often used in distributed

applications.

Through a private communication network nodes running the WorkerProcess connect

to the master. Starting up the WorkerProcess will in fact start a configurable number

of parallel slots on these nodes. Each slot is an independent copy of all necessary worker

services that only share the layer for network and database access. The most important

services running for each slot are:

StepExecutor: This service takes instructions from a masters SuperStepManager to

start, pause, and stop processing of supersteps. It contains a list of all executing

algorithms alongside with global status. Moreover vertex local volatile memory

is stored in this component.

MessageQueue: In the Pregel paradigm vertex-to-vertex communication is the main

means of inter-process communication. The MessageQueue is responsible for

keeping a buffer of outgoing and in-coming messages for each vertex. The com-

ponent uses the partition table and partitioning function to route messages to

the correct worker processes. The buffer provides better efficiency since multiple

messages that need to get routed to a different worker can be sent in larger blocks.

Partition: The Partition service is the data storage and access layer of each worker

node. It provides the functionality and in-memory data model for graph partitions

stored on each individual worker. Optional storage backends can be used to make

data stored in a partition persistent.

Worker nodes can optionally run storage backends. In figure 4.1 a Cassandra storage

backend was added to the system. Cassandra database nodes can run alongside the

DynamoGraph service on the worker nodes.

4.2.1 Big Data and Cloud-based Computation

Computing based on scalable cloud technology is today often used to compute problems

that fall into the category of Big Data. The most popular definition of Big Data

currently is given by NIST [76]. One faces a Big Data problem when one of the 3-Vs:

Volume, Variety, and Velocity grow so big in size that the data becomes awkward to

handle on a regular computer. This means data data grows so big in size that it does



Reference Implementation of the Distributed Processing Framework 88

not fit on a regular single computer system for storage and processing, that it comes

in such broad variety that regular analysis methodologies from business intelligence no

longer hold, or that the data arrives at computing systems in a velocity that makes it

impractical to directly compute on it.

Most solutions addressing Big Data today (aside the traditional high-performance com-

puting arena) run on commodity hardware and use cloud based computing frameworks

as an abstraction layer for computing infrastructure. This allows the data to be anal-

ysed to live in cloud-based scalable distributed data-storage and the computation be

performed in cloud-based scalable computing resources. Without discussing concrete

systems now (for which the interested reader is referred to chapter 2 related work) the

idea inherent in most Big Data processing systems is, that instead of loading data from

a storage system to a computing component, data is stored in a distributed fashion on

a compute cluster. Algorithms are ”pushed” down to the servers actually storing the

data for computation on local partitions of the data.

From the descriptions given in the last sections it is clear that also the framework dis-

cussed in this thesis can be used to address Big Data problems. Users of the framework

can store temporal graph data in the cloud, then formalise algorithms and send those

algorithms to the compute cluster for distributed execution.

In cloud computing three basic service models were defined. These models are

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS). IaaS provides virtual computing components through an service API,

such that the tasks of provisioning computing resources such as storage, virtual ma-

chines, and network can be done in software. PaaS provides complete compute plat-

forms to its users such that tasks such as installing frameworks and libraries on top of

concrete (virtual) machines are outsourced to a service provider. And finally SaaS is

a service model where users are consuming a software system (often through the web)

which is completely maintained by the service provider.

The framework presented in this thesis is a heavy user of the IaaS paradigm. Numer-

ous automatic provisioning scripts were created throughout developing the reference

implementation. Complete cluster installations can easily be rolled on popular private

cloud stacks such as OpenNebula and OpenStack, and on public cloud stacks such as

Amazon AWS 1. The automatic provisioning of the framework would make the leap of

providing DynamoGraph as a PaaS system small. Details on the automatic provision-

ing are described in the evaluation chapter 6 (see section 6.3.3) where the provisioning

is also used to run automated tests on an infrastructure cloud stack.

1http://aws.amazon.com

http://aws.amazon.com
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4.2.2 Technological Decisions

As of writing this for data analysis, graph processing, and distributed systems in general

a plethora of different base technologies are available. Programming languages, graph

frameworks, databases, caching frameworks, and cloud solutions exist plentiful which

makes technology decisions in this area very difficult. One may argue that the refer-

ence implementation could also have been implemented with a different programming

language or on top of a different platform. However, this reference implementation was

built on top of the Java VM and mainly in the Java programming language.

The main reason for this is that most popular Big Data processing frameworks avail-

able now are mainly written in Java. Some of these popular platforms are Hadoop2,

Storm3, Spark4, Giraph5, and GPS [96]. By using Java also for the implementation

of DynamoGraph it was hoped to be able to reuse components from other popular

processing stacks, to appeal to other Big Data developers since there is less overhead

in learning a completely new programming environment, and finally to provide some

basic compatibility with other systems as those named before.

Further, Java seems to provide a good trade-off between a compiled language and an

interpreted language. Since Java is compiled to byte code which is then interpreted

in the Java VM one gains the performance benefits provided by a compiled language

and still is able to use features of interpreted languages such as dynamic loading and

unloading of code as explained in section 4.1.8. Other related tools used during the

development of the reference implementation, their exact versions, the Maven / Java

projects created, and further implementation details are summarised in appendix A.

4.3 Distributed Configuration with ZooKeeper

Since the prototypical implementation is designed to run on top of cloud based environ-

ments also cluster configuration needs to use a cloud based configuration framework.

Distributed cluster configuration poses special requirements since it is desirable that

all nodes in the cluster see the same configuration information at any point in time.

If this requirement can be met also distributed synchronisation mechanisms can be

implemented on top of the configuration framework.

2Apache Hadoop: http://hadoop.apache.org
3Apache Storm: http://storm.apache.org/
4Apache Spark: http://spark.apache.org
5Apache Giraph: http://giraph.apache.org

http://hadoop.apache.org
http://storm.apache.org/
http://spark.apache.org
http://giraph.apache.org
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In the DynamoGraph project distributed configuration is used as a naming directory

for compute nodes participating in the compute cluster. The naming directory holds a

list of all nodes part of the system and the TCP/IP ports used as their service ports.

Further the naming directory holds information about the role of each node.

As a distributed configuration framework the Apache ZooKeeper services6 was chosen

since it has been proven to be stable in several open source distributed computing

projects such as Apache Hadoop and Apache Storm. ZooKeeper is implemented as a

server application that provides a virtual directory structure to connecting clients. For

each mutation in the directory structure and also the content of directories ZooKeeper

guaranties that all clients see the very same information at any point in time. Further

ZooKeeper provides simple mechanisms for conflict solving such as automatically enu-

merating directories that were created by different clients under the same name (called

sequences in ZooKeeper), and asynchronous creation of directories such that success or

failure is reported through a callback handler (called a monitor in ZooKeeper). Finally,

ZooKeeper supports ephemeral directory creation modes which ensures that all data

created by a certain client gets removed from the directory once the client disconnects

(more precisely fails to continuously send keep-alive messages).

In DynamoGraph ZooKeeper is used to serve three purposes (1) it is the service di-

rectory for the compute cluster where general configuration information, and the IP

addresses of the master and worker can be looked up, (2) the cluster system uses it

for election of a master node (see section 4.3.1), (3) clients use it as entry point to the

system to query the IP address and port of the DynamoGraph service API.

The service directory is implemented using two directories. In /Master the service

endpoint for the current master node is stored, and the path /Workers contains a sub-

directory for each worker node registered in the system. The worker node subdirectories

contain pointers to the service endpoints for each worker. ZooKeeper supports several

directory creation modes that affect how ZooKeeper reports changes to other clients

connected to the service and querying information from a directory (in ZooKeeper this is

called monitoring). For the service directories (master and workers) the EPHEMERAL cre-

ation mode is used. In this mode newly created directories are evicted from ZooKeeper

once the client creating it gracefully quits or fails to send keep-alive packets. Other

ZooKeeper clients monitoring a directory get notified about directories that get deleted

such that nodes that get added and removed from the system can be handled prop-

erly.

New worker nodes added to the system are detected by the master node and lead to

pausing current algorithm execution and asking the partition manager on the master

6Apache ZooKeeper: http://zookeeper.apache.org

http://zookeeper.apache.org
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node to rebalance partitions. Worker nodes vanishing from the system show similar

behavior but will also re-schedule algorithm execution for algorithms that failed due

to results missing from a failed worker. If the /Master directory is removed from

ZooKeeper the remaining compute nodes try to recover and start a master election

process (see section 4.3.1).

Finally ZooKeeper is also used for coordinated operations i.e. a command line client

application for cluster management is able to store instructions in ZooKeeper that are

to be executed by all workers. Through this mechanisms administrators are able to

manually start an election process (through deletion of the /Master directory), grace-

fully remove a node from the cluster (waiting for all algorithms to run completion before

removing a worker), and finally to shutdown the complete cluster through creating the

/Kill directory in ZooKeeper.

4.3.1 Master Role Compute Nodes and their Election

In every DynamoGraph cluster there is a single compute node that acts as the systems

master node. From a clients perspective the master is a single point of contact to the

cluster system. It manages the currently stored graph, their partitioning over worker

nodes, and the execution of temporal graph algorithms.

In general every node in a DynamoGraph cluster can hold the master role in the system.

By default the master node runs both, the master and the worker-process. However, this

behavior can be disabled through a configuration setting (DESIGNATED_MASTER). The

master node gets elected through a protocol implemented on top of ZooKeeper. Here the

SEQUENCE and EPHEMERAL directory creation modes of ZooKeeper are facilitated. The

SEQUENCE mode acts in a way of automatically enumerating directories created with the

same name. In the case of DynamoGraph the directory /Election/sequenceNumber is

created by each client joining the cluster. ZooKeeper automatically enumerates this and

will for example create /Election/sequenceNumber.0006 for a particular node. The

compute node that has the smallest sequence number will be elected master node.

Once a compute node was elected master it fires up all necessary master services and

the service API to be used by clients and creates all necessary internal data structures

to manage the cluster (i.e. a partition manager, a storage backend, a directory of active

algorithms). It will then notify all other compute nodes in the system through creating

the /Master directory which contains the internal service endpoint which worker nodes

can use to contact the master.
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After the master processes are running the master is in Disabled mode. Once the

/Master directory shows up in ZooKeeper all worker nodes will start to initialize.

They reconfigure their message queues and partition manager. After completion they

start sending keep-alive packets to the master. The master switches to Enabled. In

Disabled mode all algorithm execution and certain API calls (graph manipulation)

are completely disabled. If the master process fires an exception an exception handler

on the master node decides whether to completely kill the master process which will

lead to starting the election process. If a new election process does not make sense

(database connection failed, a configurable number of worker nodes failed at the same

time, etc.) then the master is switches to Failed which shows the same behavior as

Disabled, currently the master cannot recover from Failed.

As explained earlier the directory for the sequence number and also the directory

containing the masters service endpoint information are created in EPHEMERAL mode.

Which means that the directory is deleted from ZooKeeper immediately if a client dis-

connects. This mechanism is leveraged to implicitly monitor the system for master

node failure. All nodes in the system monitor the /Master directory, if it vanishes a

new election process is started.

In real world tests it turned out that the workload imposed by the master node is in a

range where it is sufficient to also run a worker node role on the same compute node

with the master node.

4.3.2 Worker Role Compute Nodes

By default every node started up in a DynamoGraph cluster is started as pure worker

node. During startup worker nodes query the ZooKeeper /Master directory to retrieve

the internal cluster service endpoint. If no data could be retrieved the election process

as explained earlier is started. If a master node was found and reachable (by sending

a keep-alive packet) through the denoted service endpoint the newly started worker

nodes proceeds with internal setup.

Since in modern computing hardware multi-core CPUs are the norm each worker node

launches several processing threads to facilitate optimal resource usage. These threads

are called slots in the system. Each is responsible for managing a partition of the graph

and running algorithms on their local partition. First configuration files are read to

determine how many parallel processes and thus partitions should be hosted on the

worker node. All slots share some common infrastructure but aside from that they

manage their local partition independently and execute code in their own thread. For

administrators and developers to determine a good number of slots per worker node
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the number of CPUs installed on the host machines is a good guess. This way each

slot can run on a reserved CPU; first tests with overbooking CPUs by 150% also gave

good results. The actual number of slots will need to be determined on a use-case basis.

The current implementation of the prototype does not allow for slots to be changed

dynamically. Changes of slots require coordinated restart of the complete cluster.

Slots share a common PartitionTable which provides the implementation of the par-

titioning function to determine on which worker and slot a certain partition is living.

Further a component called PacketRouter is created during worker node start-up which

is capable of routing messages locally or remote through the communication network.

The component StepLoader provides code loading capabilities to all slots and is used

by the StepExecutor to load user-provided Java code. Finally, a component called

NodeMonitor collects monitoring data from the worker and all slots and submits it in

batches and in a regular interval to the master node.

Slots themselves initialise two things (1) they create a ModelNameSpace which is the

component that manages the local graph partitions of multiple namespaces assigned

to the slot, (2) the slot starts a processing thread that waits for incoming packets

and reacts on the encoded commands. After the worker process itself and all slots

have successfully initialised the worker node creates a sequence directory on ZooKeeper

named /Workers/worker.XXXX which contains the IP address and port numbers of the

worker node. As the master node is monitoring /Workers for changes it gets notified

about the added worker node and finalise worker node registration.

Finalisation, depending on the partitioning algorithm in use, can lead to pausing algo-

rithm execution and reorganisation of the data. Assuming that the PartitionManager

on the master node concludes that redistribution of vertices is necessary it computes

a new PartitionTable and broadcasts the new partition table to all slots. The slots

use the partition table to iterate over their local vertices and move all vertices that

need to be migrated to a different partition to the new slot. This behavior can be

omitted by using a KeyValue store as a persistence layer (see section 4.9.2) which is

preferable in a real world scenario, in worst-case scenarios large volumes of data need

to be transmitted through network links in order to apply a new partition schema.

After the cluster returns to a re-partitioned state the master node continues to accept

new commands from client applications and can instruct worker nodes to execute data

manipulation commands or to run superstep algorithms through the SuperStepMan-

ager.
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4.3.3 Node Failure and Recovery

The last section discussed adding nodes to the system which is a normal operation

during cluster startup and when users are up-scaling a compute cluster. On the other

hand nodes can also be shut-down either during a down-scaling process, or because a

software or hardware failure. Depending on the node different recovery scenarios can

be run.

Currently three different methods are employed for detecting whether any node in the

cluster failed (1) the logical communication links between the individual processes are

implemented as TCP/IP socket connections, if they break node-failure is assumed, (2)

a watch dog running on all nodes sends keep-alive packets at a configurable interval

to detect broken network connections, and (3) the ZooKeeper directories /Master and

/Workers/worker.XXXX are created using EPHEMERAL mode such that they get removed

if the creating process died. All three methods are implemented in a single watchdog

class called SocketWatchDog which notifies workers and master about node failures.

In general there are two situations that need to be handled (1) a worker node failed,

(2) the master node failed. The latter in certain setups will mean that also the worker

node running on the same computer failed.

In case a worker node failed the master node switches into Disabled mode and discon-

tinues to take instructions from client applications. The master then sends a keep-alive

packet to all worker nodes in order do determine which worker nodes are still in a

healthy state. Depending on the replies it receives from the workers the partition table

is updated (unless too many workers failed in that case it switches to Failed state).

The new partition table is then broadcast to all the workers which as already discussed

in the last section will lead to redistribution of vertices in the cluster. Now with the

only difference that also the vertices currently in backup-partitions are taken into ac-

count such that data which was residing on the failed worker node is recovered from

the backup partition.

After reorganisation has completed the master node switches back to Enabled state

and thus continues to accept commands from client applications. The switch operation

also notifies the SuperStepManager which in turn will restart all supersteps that did

not run to completion.
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4.4 Intra-Cluster Communication

Apart from basic configuration and coordination functionality ZooKeeper turned out to

provide too high latency to be used as a mechanisms for node to node communication.

Thus alternative forms needed to be found. It was already revealed in earlier sections

that the current intra-cluster communication layer is based on TCP/IP socket connec-

tions with output buffers. TCP connections were chosen over UDP packets because

TCP already provides state-full connections and error correction over the communica-

tion network. UDP packets would have had the disadvantage that almost all communi-

cation sent from one node to another would have needed some sort of acknowledgment

mechanism to avoid errors originating from lost UDP packets.

Nevertheless the intra-cluster communication services were implemented as abstract

classes such that the lower-level access to communication links can be implemented on

top of a variety of different systems. The contract given by the service interface requires

that two Java interfaces are implemented. The first interface is called PacketHandler,

this interface is responsible for receiving incoming communication data which are en-

coded as Packet objects. All commands, and data transmitted in the cluster are

wrapped up in Packet object or child objects of Packet. The PacketHandler also

needs to implement a method called getServiceEndpoint which generates a network

endpoint description for the local communication service. In the current implementa-

tion which is based on TCP/IP sockets this service endpoint description consists of the

IP address of the host and the port that is used to receive incoming data. This informa-

tion is used directly to feed the service directory in ZooKeeper. Other implementations

of a network communication layer thus can encode their connection information in a

compatible way (i.e. the URL of a message feed on a message queue system).

For the outgoing direction the abstract class PacketSender needs to be inherited. The

method send needs to be implemented on top of the chosen communication layer. The

send method receives the Packet and connection information of the target partition as

parameter. In the TCP/IP implementation provided in the reference implementation

connection pools are used to re-use the TCP/IP connections for optimal performance.

By default the framework assumes that a state-full communication network is used

which is not losing any data and provides proper exceptions if network links break.

However, first tests with state-less communication based on UDP were made. Thus the

framework supports a mode where every sent packet is acknowledged by the receiver

with an confirmation packet. This behavior can be enabled through a system setting

called CONFIRM_PACKETS.
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On top of the generic communication layer which is capable of sending objects of type

Packet different types of payload can be implemented. These payload can be node to

node commands (i.e. the master node instructing a certain partition to store a vertex),

and vertex to vertex commands (i.e. during a superstep execution a vertex sends a

message to another vertex). Technically speaking the Packet objects are Java objects

and are serialized into byte data prior sending them through a communication link.

In the reference implementation also the serialisation process is implemented as a

generic interface such that different forms of data serialisation can be tested. As the

current default implementation the Java serialisation mechanism (in the reference im-

plementation named JDK-serialisation) is used. However, other serialisations libraries

such as the fast java serialisation drop-in replacement (FST)7 which claims to provide

better performance compared to JDK serialisation, and Kyro8 another fast serialisa-

tion library famously used in many Big Data projects (Apache Storm, Apache S4) were

added to the system for experimentation.

Further, a JSON serialisation mechanism based on the Gson library9 was added to the

reference implementation. This implementation provides the advantage that during

debugging the network traffic remains human-readable.

Framework users are able to select any of the predefined serialisation mechanisms by

setting the configuration value SERIALIZATION. New mechanisms can easily be inte-

grated by extending the class CommandClient.

4.5 Algorithm Execution

The main goal of the reference implementation was to cover the distributed temporal

graph computation model which was explained earlier in section 3.4. As a short recap

the framework is modeled after Pregel which is massively parallel processing strategy

for graphs. Pregel was extended for some further functions as already discussed in

section 3.4.1. At the core of Pregel is a compute function c(v,Γ) which is executed for

each vertex in the graph. The function signature receives the vertex v and a copy of

the global memory Γ as parameters.

In the reference implementation the compute function c is reflected by a method in

the abstract class SuperStep. This class provides an abstract method called execute

which is to be implemented by framework users. Further the class provides two empty

7http://ruedigermoeller.github.io/fast-serialization/
8https://github.com/EsotericSoftware/kryo
9https://github.com/google/gson

http://ruedigermoeller.github.io/fast-serialization/
https://github.com/EsotericSoftware/kryo
https://github.com/google/gson
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methods init, and global which refer to the Pregel extensions for initialising global

memory and performing global actions between each step.

The class further provides helper methods used during algorithm execution. Most

importantly functions to start execution of the step on a partition in a particular

namespace, functions that allow for vertex-to-vertex messages being sent and received

in the compute function, and the voteToHalt method that sets the vote-to-halt flag for

a particular vertex.

In the class SuperStep also an empty method getReducers is found. This method can

be overridden by algorithm implementations in order to specify how certain attributes of

the distributed copies of global memory need to be combined. This aspect of supersteps

is discussed in greater detail later in this section.

For framework users to run an algorithm on top of the framework they need to provide

a non-abstract implementation of a superstep trough extending the SuperStep class.

An example of a minimal superstep is given in listing 4.1. The superstep does not

perform any operation in the init, and global method. In the execute phase the

step immediately votes to halt which results in a superstep not performing any useful

operation.

Listing 4.1: Minimal implementation of SuperStep

1 public class NoOperationStep extends Superstep {

2

3 @Override

4 public void global(SuperStepContext c, long stepT) {

5 }

6

7 @Override

8 public void init(SuperStepContext c) {

9 }

10

11 @Override

12 public void execute(List <VertexMessage > messages ,

VertexContext vertexContext , SuperStepContext

superstepContext , Timeframe timeframe , Vertex vertex)

throws SuperStepException {

13 voteToHalt(vertexContext);

14 }

15

16 }
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For the framework being able to execute a superstep the step implementation needs to

be loaded in the JVM executing the master and all worker nodes. Framework users can

load custom load their supersteps into a running cluster as explained later in section

4.7.

In actually executing an algorithm two important components are involved. On the

master node the class SuperStepManager manages the execution of all supersteps in

the cluster, keeps track of their status and their global memory. On the worker nodes

the class Slot is responsible for executing code in the context of a namespace and a

particular partition.

When a framework user starts a superstep through a client API call (see section 4.6)

a SuperStepExecutionProfile is created on the master node. This profile holds all

important information for a superstep such as the fully-qualified name of the class im-

plementing the superstep, the namespace the step is executed on and the time-frame

that needs to be considered by the step. During creating of the SuperStepExcecution-

Profile also an instance of SuperStepContext is created which is the reflection of the

algorithm global memory Γ and is an extension over a Java HashMap. The execution

profile together with global memory is then registered at the SuperStepManager.

The SuperStepManager then uses a Java class-loader to load the superstep implementa-

tion class denoted in the SuperStepExecutionProfile. Once this load was successful

the manager calls the global method on this class in order to allow the superstep to

properly initialize global memory.

After initialisation has completed the SuperStepExecutionProfile and the Super-

StepContext are wrapped up in an ExecuteStepPacket which is sent to all Slots

managing a graph partition. Once the packets are received on the Slots running on

the worker nodes the SuperStepExecutionProfile is unpacked and the Slot loads the

superstep implementation class through a class-loader.

4.6 Client API

For framework users sending commands to the framework through pure TCP/IP net-

work links is complicated and error prone. Developers would need to understand the

exact communication protocols. To provide simple means of client to framework com-

munication a Client API was created. This client API from a pure technical perspective

is using Java Remote Method Invocation (RMI)10 which is the Java implementation for

10http://www.oracle.com/technetwork/articles/javaee/index-jsp-136424.html

http://www.oracle.com/technetwork/articles/javaee/index-jsp-136424.html


Reference Implementation of the Distributed Processing Framework 99

Remote Procedure Calls (RPC). The use of RMI hides many aspects of network com-

puting from the developers which usually makes development easier and code better

to read. RMI works by providing a Java interface which has an implementation at the

server side and a proxy representation on the client side. Apart from some minor re-

strictions, the client can use the proxy object like a regular local Java object, although

method calls to the object are routed through the network to the real implementation

on the server side.

In DynamoGraph the service interface is defined in DynamoGraphService which pro-

vides all available service methods allowing for data manipulation, scheduling of super-

steps, and retrieval of monitoring data. For the interested reader a detailed listing of

the provided API functions and their usage is documented in appendix A.1.2.

For a client to create a proxy instance of DynamoGraphService it needs to use a special

factory class called DynamoGraphFactory. This factory is necessary to hide details

about the cluster configuration from the user. DynamoGraphFactory uses standard

ZooKeeper configuration information to connect to a ZooKeeper service. This is best-

practice also with other services built using ZooKeeper. The factory then queries the

content of /Master to determine the IP address and port of the master process. With

this information an RMI service registry is created that is then used to retrieve a

connected DynamoGraphService object.

Developers using the reference implementation are highly encouraged to group calls

to the Client API in blocks. These blocks should always start with a call to the Dy-

namoGraphFactory. This way failures (and specifically master node failures) can also

be tolerated by client applications. As displayed in listing 4.2 line 1 the call ZooKeep-

erServer.defaultConfiguration() uses standard configuration files to create connec-

tion parameters for ZooKeeper which are used to create a new DynamoGraphFactory.

Line 2 of the same listing shows how this factory can be used to get a proxy object of

DynamoGraphService.

Listing 4.2: A client application getting access to the Client API

1 DynamoGraphFactory factory = new DynamoGraphFactory(

ZooKeeperServer.defaultConfiguration ());

2 DynamoGraphService service = factory.getService ();

Once a client application retrieved a DynamoGraphService proxy it is able to interact

with the cluster. The available models in general fall into three cateogories (1) data

manipulation methods, (2) algorithm execution methods, and (3) monitoring functions.
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A full list of the available methods and their description can be found in online docu-

mentation11 or in appendix A.1.2.

Data manipulation methods provide functionality to create, query, and delete names-

paces. Namespaces are denoted by their names which that need to be unique for the

system. On top of a namespace vertex, and edge methods can be executed to add,

change, remove, and query single vertices. This also includes functions to add, change,

and remove edges. Listing 4.3 demonstrates how a client application creates a new

namespace (line 3) and inserts a newly created vertex (line 5).

Listing 4.3: Adding a namespace and inserting a vertex

1 DynamoGraphFactory factory = new DynamoGraphFactory(

ZooKeeperServer.defaultConfiguration ());

2 DynamoGraphService service = factory.getService ();

3 service.createNamespace("test", Resolution.Weeks);

4 Vertex v = new Vertex(Resolution.Weeks , service.nextId("

test", new Date());

5 service.addVertex("test", v);

The next class of methods are those for executing algorithms on top of the framework.

Functions that start a superstep algorithm are asynchronous. This means that devel-

opers call a method to submit the job to the cluster. The method call returns a job

id which can then be used to query status and results from the framework. Users can

pass parameters to the algorithms by setting in algorithm global context which is called

SuperStepContext in the reference implementation. Further, developers can specify a

time frame restriction which instructs the framework to only consider data in this time

frame.

In listing 4.4 a code snippet is shown that executes a page rank algorithm (part of the

algorithms shipped with the reference implementation) on a cluster which contains a

namespace called web (service creation is omitted). In line 1 of the listing a SuperStep-

Context is created which is used in line 2 to configure a non-default damping factor

for PageRank. In line 3 the job is actually submitted to the cluster and a job id is

generated. This job id is then used in line 4 to wait for the superstep to complete and

in line 5 to retrieve the results of the execution.

Listing 4.4: Submitting a job to the cluster

1 SuperStepContext context = new SuperStepContext ();

2 context.put(PageRankStep.CONTEXT_DAMPING_FACTOR , 0.8f);

3 long jobId = service.executeAlgorithm("web", "at....

PageRankStep");

11https://dynamograph.net

https://dynamograph.net
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4 service.waitForCompletion(jobId);

5 context = service.queryAlgorithmContext(jobId);

The client API provides many more methods (an exhaustive list is given in appendix

A.1.2). A set of API calls can be used to submit user-provided code to the cluster.

Dynamic code loading and the related API methods are explained in detail in the next

section 4.7.

Further the API also provides methods to retrieve monitoring data from the master

node. This is explained in greater detail in section 4.8.

4.7 Java Dynamic Code Loading

This section discusses the implementation of a dynamic code loading module for the

Java Virtual Machine (JVM). This addresses the requirement of users being able to

upload their payload code to the framework and execute it in the context of the frame-

work.

Since this prototypical implementation is based on the Java programming language and

its accompanying execution model which is based on the JVM dynamic code loading

for Java systems was used. The JVM per se performs dynamic code loading through

a mechanism called the class loader. Every JVM during startup is configured with

a default class loader that is capable to load code from different sources generally

configured as the Java class-path 12. Java developers can leverage the mechanisms in

the JVM by asking the default class loader to load classes from third party resources

and by implementing a custom class loader. The latter has a big advantage since it

also allows to unload code from the JVM that is not in use anymore.

As an example will highlight later the DynamoGraph framework allows users to dy-

namically load code through an API call. Developers need to bundle their custom code

in Java JAR files and can send the code to the cluster for deployment. The master

node distributes the code to all the worker nodes and makes sure that the workers

deploy the JAR file. The custom class loader (in the prototype implementation called

VolatileJarClassLoader) is able to handle these custom JAR packages. Uploaded code

gets registered with an unique identifier which is the fully qualified class name of the

main algorithm class. This allows the framework to chose the correct class loader im-

plementation to load code for a certain superstep implementation. To avoid collisions

12Java CLASSPATH: https://docs.oracle.com/javase/tutorial/essential/environment/paths.
html

https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
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with other packages, code dependencies (i.e. referenced classes, interfaces and enumer-

ations) can only be loaded through the same class loader as the main class or through

the JVM default class loader.

The setup described also allows for code unloading. During algorithm execution (as

described in section 3.4) the framework registers as a code user with the class loader

that provides code for a certain algorithm and unregisters once execution finishes. This

way the framework is able to determine when it is safe to unload code from the system.

Developers are able to unload their code through a simple API call.

The following example illustrates this dynamic code loading mechanism in greater de-

tail. Let us assume a developer created a super-step implementation with in a class

with the fully qualified name net.dynamograph.code.MySuperStep and needs a run-

ning cluster to execute this code package against a certain graph. In a first step the

developer will make sure to wrap up the code and all its dependencies into a JAR file,

most likely through the use of a tool like Maven13. Let us assume the JAR file is then

named mysuperstep.jar. The developer now needs to complete the following steps to

execute the code within the context of the cluster:

• Upload the JAR file to the cluster through an API call

• Use an API call to instruct the cluster to execute the code

• Unload the code from the cluster

Listing 4.5: Loading, execution, and unloading of code through API calls

1 DynamoGraphService service; // assume connected to API

endpoint

2 String namespace; // assume initialized with a valid

namespace name

3 Timeframe timeframe; // assume initialized with a valid

timeframe

4 File testFile = new File("mysuperstep.jar");

5 FileInputStream in = new FileInputStream(testFile);

6 ByteArrayOutputStream bout = new ByteArrayOutputStream ();

7 byte[] buffer = new byte [4096];

8 while(in.available () > 0) {

9 int num = in.read(buffer);

10 bout.write(buffer , 0, num);

11 }

13Apache Maven Project: https://maven.apache.org

https://maven.apache.org
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12 in.close();

13 bout.close();

14 SuperStepContext context = new SuperStepContext ();

15 String clasz = "net.dynamograph.code.MySuperStep";

16 service.loadCode(clasz , bout.toByteArray ());

17 long id = service.executeAlgorithm(namespace , clasz ,

context , timeframe);

18 if(service.waitForCompletion(id) == ExecutionProfileState.

Completed) {

19 context = service.queryAlgorithmContext(id);

20 }else{

21 // step execution failed

22 }

23 service.unloadCode(clasz);

In source code listing 4.5 a minimalistic example implementation of code loading with

the DynamoGraph API is shown. Details about the API are discussed later in chapter

5, however, lines 1 to 3 initialise parameters such as the timeframe and the namespace

used for the actual algorithm execution. In lines 4 to 13 the JAR mysuperstep.jar

is loaded to a Java byte buffer which is later used to send the code to the cluster.

The API service call in line 16 instructs the framework to load the code and identifies

net.dynamograph.code.MySuperStep as the main class of this superstep. Assuming

that code loading was successful (no exception was thrown) in line 17 the algorithm is

executed in the specified namespace. The API call returns a unique id which can be

used to query status information about the algorithm from the framework. In the lines

18 to 22 this minimalistic client waits for the algorithm to run to completion and in

the case of successful completion retrieves the superstep context which contains results.

Finally in line 23 the code for net.dynamograph.code.MySuperStep is unloaded again

from the framework.

While this mechanism has certain advantages it obviously comes with some downsides.

Whenever code is loaded from a third party it could potentially contain harmful code

or just be erroneous and thus have a bad impact on system stability. The current

implementation for instance will not detain developers from writing to the file-system

on the compute nodes or prevent network access in any way.

The first case can be tackled by two strategies: The Java ecosystem provides a mecha-

nism called the security manager which allows fine grained configuration of access priv-

ileges. One is able to control access to important system resources such as networking,

the file-system, etc. while not implemented in the current state of the project it would
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be relatively simple to write policy files for third party algorithms and to enforce these

policies through adding security manager calls to the VolatileJarClassLoader.

A second option would be some form of code signing. Such that developers need to

use asymmetric encryption to create a signature for their code packages. During the

loading process the framework through the usage of a certification authority would be

able to identify the developer and allow or deny code loading. This pattern is already

popularity implemented at diverse mobile application stores such as Apple’s App Store

and the Google Play Store.

In the second case where a developer uploads potentially harmful code by accident

more complex countermeasures need to be found. One case that comes to ones mind

is a situation where break or termination conditions in the user’s code are erroneous.

It could be as simple as flawed loop logic that leads to endless loops or on a more

global scale an algorithm that never votes for halt. The first case needs to be addressed

through a mechanism that sets upper boundaries on the execution time of a single step

during vertex local computation. The framework needs to cancel algorithm execution

if this boundary is violated. These timeout settings will be a parameter usually chosen

by a system administrator.

On the other hand the number of algorithm iterations might run out of hand since

an algorithm falsely never votes for halt. In this case the decision needs to be left to

the developer. Depending on the algorithm very long but also very short execution

trails were observed in the tests of diverse algorithms. For instance the computation

of vertex degree for all vertices in the network can be performed in a single super-step.

The calculation of PageRank however takes 52 iterations on average to reach a stable

result [89]. The problem can be addressed from two ways. First of all through the API

it is possible at any time during algorithm execution to terminate a run. If it is not

clear to the developers yet how many iterations their algorithms typically it is possible

to terminate a run if it seems to take an unusual long time. Further it is possible to

specify a maximum number of super-steps to be executed during a run. If this boundary

is reached the framework automatically cancels the run.

4.8 Monitoring

As already argued earlier systems that are designed to run in a cluster composition have

special requirements on monitoring. Firstly these systems are harder to debug because

it is impractical to use common means of debugging (step-debuggers) on many different
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computers in parallel. An second, in production deployment scenarios machine load

needs to be closely monitored to react upon resource bottlenecks.

Monitoring is not in the center of attention for this thesis. Thus a tool-chain to monitor

DynamoGraph was outsourced as a master’s thesis [113]. The reference implementation,

however, provides extensive mechanisms to collect monitoring data, stores it in in-

memory buffers, and provides a client API to retrieve this data in bulk.

For the collection of monitoring data so called sensors are used. This is reflected in the

framework by the Java interface Sensor. A sensor needs to be capable of providing a

label that names the sensor and has to implement the method getValue. getValue

must be implemented in a way to not affect system state, it must not create any locks

on monitored data-structures. Each compute node (worker and master) during startup

creates an instance of the class NodeMonitor the node monitor can be used to register

an arbitrary number of Sensors. The NodeMonitor runs its own monitoring thread

which in a configurable interval queries all registered sensors for their current value.

On worker nodes the results are sent via a monitoring packet to the master node, the

master node directly stores the results to in-memory buffers. This buffer is organised

as a map where the key describes the node type, its IP address and port such that the

origin of sensor data is encoded in the data structure. Clients can request the whole

map to analyse different load aspects of the system.

Due to the simplicity of the implemented interval based monitoring model other more

advanced sensors, such as event based sensors were omitted from the implementation.

On the other hand, for crucial tasks like debugging of algorithms and system evaluation,

specialized service methods where implemented which allow an application program-

mer to retrieve part of the system state on-demand. These calls include an function

to retrieve details on algorithm execution, containing fields describing current global

context, the number of active vertices, active slots, pending messages and overall al-

gorithm state. Further, for long running data-import jobs the current import progress

with details (number of failed records, number of active workers, etc.) can be retrieved

if the import job is not a streaming data import and thus supports the computation of

progress.

Sensors currently implemented in the system are the following:

CPU Sensor: This sensor returns an array with the CPU load of all CPUs installed in

the system.

Memory Sensor: This sensor returns numeric values for the free, used, and maximum

memory of the system.
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Algorithm Sensor: This sensor returns a list of all currently executing algorithms (su-

persteps), their current phase and step, and the number of active vertices in the

algorithm.

Counting Sensor: A generic counting sensor is available to count arbitrary events hap-

pening on any of the nodes. This sensor is currently used by the reference imple-

mentation to count the number of network connections that were established to

any of the service endpoints. Sudden raise in this metric is a clear indicator for

network instabilities.

Connection Pool Sensor is a metric that provides information on the use of connection

pools. The number of connections in a pool should be relatively constant unless

nodes are added or removed from the system. The sensor also returns the number

of locked (used) connections, if this number is constantly high this means that

communication bottlenecks are occurring on the worker nodes.

Partition Sensor: This sensor returns the number of currently active partitions.

Slot Sensor: This sensor returns the number of running slots in the system.

Timestamp Sensor: Upon each getValue provides the current machine timestamp.

This is just a helper to assign the time of sensor data reading to the data.

Through the mechanism described, new sensors can be added to the system any time

without breaking compatibility to tools using the sensor data.

4.9 Persistence Backends

By design it is possible to run the DynamoGraph framework as a stand-alone analysis

platform. In this stand-alone mode all data is kept in memory. Restarts of compute

node or the complete cluster will lead to loss of this in-memory model eventually. In the

real world implementation this mode is called Transient-Mode and can be configured

through setting the configuration value PERSISTENCE to None. Users running their

cluster in this mode will need to make sure that the dataset will fit into memory on

the available machines and before any experiments datasets need to be uploaded to

the framework through API calls. Given the size of the datasets addressed by the

framework this is a very time consuming process, leading to a situation where the

Transient-Mode is actually only used in test scenarios where the framework itself or

new algorithms implemented in the framework are tested. As described later 5.2 the
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framework can also run in a stand-alone mode where all components of the framework

are executed in a sequential manner in a single JVM for debugging of algorithms. In

this stand-alone mode Transient-Mode is the only option.

In order to allow storing to a backend storage service certain persistence mechanisms

where introduced. The framework can be switched to Persistence-Mode by setting the

configuration value PERSISTENCE to the name of an actual persistence implementation.

As discussed another requirement for the framework was modularity. This means that

the persistence backend is implemented as a module and currently two implementations

are available. A file based storage backend and one based on a KeyValue-store. Which

ever storage mode is used the in-memory model also used in Transient-Mode is used

as a cache for the graph model. The storage backend is implemented through an Java

interface named ModelPersistor storage capabilities thus can easily be extended by

implementing this interface.

4.9.1 File Based Persistence Backend

For development purposes and to minimize configuration overhead a file based storage

backend is available. In this mode a configuration value called PERSISTENCE_FILE_PATH

specifies a directory which every compute node in the cluster uses to create a node local

directory for data storage. In this directory for each name-space in the system a sub-

folder is created in which a collection of JSON encoded [1] documents is stored. Each of

these documents refers to a single vertex (temporal map) in the graph. The filenames

of the documents reflect to the vertex IDs in the network which allows direct access to

the data.

This implementation is obviously limited by the local disk storage assigned to the worker

nodes and is performance wise bound to the IO speed of the compute nodes. In this

mode node failure will potentially lead to data loss unless the recovery actions are able

to restore from the backup copies stored on the backup partitions.

A further limitation is that the JSON notation is comparably slow to binary formats

in reading and writing vertices. This restriction turned out to be no limiting factor

during development scenarios and allows for off-line analysis of the vertices on disk.
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4.9.2 Cassandra Persistence Backend

A second implementation was created using a KeyValue-store to be precise the current

implementation works with the Cassandra14 only. KeyValue-stores in general scale

very well horizontally and are usually designed to be used in distributed computing

environments. For the first implementation Cassandra was chosen as KeyValue-store

since it uses similar underlying technology (Java, ZooKeeper) and is designed to be run

in a distributed manner. In Cassandra this is called a ring. A ring is a distributed

computing setup where each node is not only contributing storage capacity to the

system but is also a fully qualified API endpoint to clients. This means clients can

talk to any node in the system to read and write data. The Cassandra ring depending

on concrete configuration manages the distributed storage and commit strategies for

backup copies of all records.

The properties described make Cassandra the perfect choice to run in conjunction with

the DynamoGraph compute framework. It is possible to run a Cassandra node and

a DynamoGraph node on every compute node in the system. The worker nodes in

DynamoGraph that use the Cassandra client API thus have local network access to

the Cassandra ring which (again depending on configuration) allows for full usage of

Cassandra’s read cache. This will lead to optimal performance since read and write

operations can mostly be executed locally.

The DynamoGraph namespaces are directly mapped to Cassandra keyspaces. Thus for

every namespace in DynamoGraph a keyspace in Cassandra exists. On top of Cassandra

two data storage strategies were implemented. Cassandra provides the concept of a

column store which allows to store structured data in the system similar to relational

databases. The column store is however used as a pure KeyValue store where the vertex

id is used as the key and one data column is used as the value. The value is either a

human-readable JSON document or a Java serialised binary representation of vertices,

depending on configuration.

4.10 Future Improvements

As the provided reference implementation is a proof-of-concept for scientific use, there

are still many points that leave room for improvement especially if it were considered

to use DynamoGraph in production grade environments. In this section some of the

improvements planned during continued research in this area are discussed.

14http://cassandra.apache.org

http://cassandra.apache.org
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Further node to node communication is currently implemented through an abstract

service layer that uses TCP/IP as a communication channel and is able to talk different

encoding protocols (Java, Kyro and FST serialisation, and JSON) this layer is using

in-memory input and output buffers that under certain conditions (severe network lag

of a worker) can overflow and worst case can lead to worker node failure. This could be

omitted by using proven message queue systems often used in other cloud-based service

and Big Data infrastructures. Examples for message queue systems are RabbitMQ15,

ZeroMQ16, and any implementation of the Java Message Service17. These systems are

capable of buffering a large number of messages in a distributed, and ordered fashion

such that it is still guaranteed that messages arrive at the recipients end in the same

order as they were sent.

The current reference implementation also poses the restrictions that super-steps are

scheduled and processed by the SuperStepManager in sequential manner. One could

imagine that supersteps can also be executed in parallel, such that every slot on every

worker runs an individual thread for each superstep. This change, however, would

require severe restructuring of the worker nodes which, in the current phase of the

project, is not desirable. The question that still remains is whether or not performance

gains can be achieved through executing supersteps in parallel.

4.11 Concluding Remarks

This chapter has elaborated on the extended requirements when putting the theoretical

model discussed in chapter 3 into practice. To prove that the presented approach is

feasible from a pure technical point of view a reference implementation in Java was

created. This chapter discussed the technical challenges faced during implementation

and elaborated on their solutions. Different options for configuring certain aspects of

the systems were presented, and a first reflection on room for improvement was made.

The chapter gave first insights how software developers are able to use this framework

for distributed temporal graph computing.

As this chapter addressed mainly the inner workings of the reference implementation

of DynamoGraph, the Client API was only briefly discussed. Concrete usage examples

and the use of the framework from a developers perspective can be found in the next

chapter 5.

15https://www.rabbitmq.com
16http://zeromq.org
17http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html

https://www.rabbitmq.com
http://zeromq.org
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
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Chapter 5

Usage of the Distributed Processing

Framework

In the following chapter a brief introduction on, how prospective users (developers)

can make use of the platform for their projects, is given. It covers typical use-cases

5.1 on a highly abstract level, execution modes 5.2, and setup scenarios 5.4 of the

platform. Starting with section 5.6 case studies are discussed. These studies show how

data originating from social networks, online social networks, but also the Web can be

processed on top of the presented framework.

5.1 Typical Use-Cases

In typical use-case scenarios DynamoGraph will be used as a backend processing frame-

work completely transparent to end-users. Typical applications will connect to various

graph data-sources. These data-sources can be of various nature such as sensors, de-

vices, and databases. It is not necessary that the data stored in these sources is already

of graph structure. More often than that data will be some other type of raw-data

that can be interpreted as graph data (e-Mail databases, Bluetooth proximity records

etc.). As DynamoGraph allows temporal analytics over data it can also be used for near

real-time applications. Where data is continuously fed into the system and metrics are

continuously computed over the most recent data (See also section 5.5 for details on

data ingestion). As outlined in figure 5.1 the first phase of a DynamoGraph application

is thus referred to as sensing.

Sensor data is then streamed to the modeling component for further processing. mod-

eling still contains tasks which are outside the scope of DynamoGraph. Such as the

monitoring of sensors to determine if the sensors are continuously providing data and

are not defective. Data cleansing that filters out erroneous data from the data streams
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Figure 5.1: Typical architecture of an application using DynamoGraph

and omits records which are not useful for the task at hand. DynamoGraph then takes

care for further steps in modeling such as the data organisation (i.e. partitioning data

over many machines if necessary) and graph modeling (i.e. organising the data in named

graph namespaces to allow user access) (see also the center block of figure 5.1).

Finally the data stored in the cloud-based temporal graph model can be interpreted

for various applications. In this thesis the interpretation in a web-based visualisation

is presented (sec 5.3). However, other applications might provide recommendations as

results (see learning networks 5.6.1) or provide alerts in situations out of norm.

End-users will only touch DynamoGraph-based systems in their sensing and interpre-

tation aspects. For instance a mobile application on a users smart-phone can provide

sensing data and provide alerts.

5.2 Execution Modes

In general the platform is designed to address two very distinct application scenarios.

Firstly, and quite obvious the platform can run in a production environment where

data processing jobs are to be computed and the output of these jobs is the main

concern. Secondly, the platform might also be run to implement compatible Pregel-

style algorithms. In the latter case the implementation, and testing of newly invented

algorithms is the main goal.
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5.2.1 Cluster Mode

For production environments the processing framework will usually run on in Cluster

Mode a compute cluster with the roles already discussed in section 4.2. It will usually

be part of a larger software infrastructure such that users will not directly interface

with it.

The actual implementation of DynamoGraph is a scientific prototype which leaves much

room for configuration through the operators of the system. In general cluster mode

runs a single instance of a JVM executing the master and worker roles on a single

computer. As discussed in the architecture 4.2 each worker runs multiple parallel exe-

cution threads called Slots. Depending on the actual usage scenario and the available

hardware configurations operators can decide to create almost arbitrary combinations

of workers and slots. For instance for medium sized datasets such as the Enron e-Mail

database single machines with multiple CPUs and sufficient large memory could be

used. In this case operators will most likely run multiple slots on this single machine

roughly running a single slot for each processor available to the system.

For large-scale datasets such as the IU Click Dataset which in its raw and uncompressed

memory foot-print amounts for roughly 14TB large clusters need to be setup. The

trade-off here is to dimension the cluster size in a way that as much of the graph can

be fit into memory as possible to achieve optimal performance. For the raw data-

set this will imposes a memory requirement currently only found in high performance

computing setups or with public cloud providers. Both very expensive options. Thus

operators might decide to configure the cluster for persistent mode which means that

data is actually stored in a Key-Value store and the in-memory representation is only

a cache of this data. Naturally this will come at the cost of reduced performance.

5.2.2 Local Developer Mode

In the latter case, developers work with the system. They use it to develop algorithms

and implement them as Pregel functions to be executed in the context of a compute

cluster. However, many tasks that are easy in modern software development and thus

have become the norm in the software development life cycle, such as automated test-

ing, debugging, and memory inspection, become cumbersome in distributed software

systems. To the developer a distributed system often seems like a black box where it

is not immediately clear which computer is executing which parts of a system. More-

over in distributed processing paradigms like the presented a processing function gets

executed on potentially many different computers in multiple threads.
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Parts of the DynamoGraph framework can be executed in what is called the Local

Developer Mode. This mode allows developers to keep small temporal graphs in memory

on their developer machine and allows them to execute Pregel-styled jobs in a single

thread in a single JVM over these local graph models. In local developer mode break-

points can be set in jobs and developers can use step debugging and memory inspection

to analyze the runtime behaviour of their code.

Further, automated tests (unit tests) can be and are implemented facilitating the local

developer mode. Those tests are usually complex compared to tests performed in other

software frameworks. They usually consist of steps for creating a temporal graph model

in-memory, executing a certain job over the model, collecting the resulting metrics from

the job, and asserting the results.

5.3 Web-based Graph Visualization

A still unsolved problem in large-scale temporal graph analysis is the visualisation

of large graphs (see 1.2). Graph visualisation is a very natural way of making the

information stored in a network accessible. Graph visualisation today is so pervasive

that figures usually do not need further explanation and often case can be interpreted

by laymen. If large-scale temporal graphs are concerned visualisation becomes far more

difficult. In general there are two dimensions in the visualisation that are not adequately

addressed today, the size and the time dimension.

The size of large scale graphs makes it inexpedient to use regular visualisation libraries

and moreover automatic layout algorithms. Naturally traditional vertex and edge vi-

sualisations with millions of vertices are hard to visualise on screens that themselves

provide resolutions of only a few million pixels. The result of such visualisations at

best is what is known as a hairball (see example in figure 5.2 and if anything allows the

viewer to compare the overall structure of networks with each other.

Further automated layouts for large-scale graphs become computationally very expen-

sive. A popular method for graph layouting graphs is the use of force directed layouts.

Their overall idea is that vertices (perhaps depending on some parameters such as the

vertex degree) are subject to mutual repulsive forces. Such that no other counter-forces

are applied they would drift apart. Counter-force is given due to the assumption that

edges between vertices act as connecting spring bands. Iterative update of a graph

model in a simulation converts the graph model from an irregular layout to a force

directed layout. Already from the brief description given above it is clear that this

category of algorithms has a worst case runtime complexity of O(n2) (n the number
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Figure 5.2: A hairball that provides perhaps a general overview but no details [83]

of vertices in the graph) because at least every vertex needs to be put in context with

every other vertex of the graph on each iteration. With optimisations some algorithms

can reuse computation results and achieve O(n ∗ log(n)) complexity [50]. Nevertheless,

it is clear that complexity grows with the size of the graph.

The second problem with large scale temporal graph visualisation is adequate reflection

of the temporal dimension. In general (see also figure 1.2 in section 1.3.1) for graphs

of small size the visualisation of temporal graphs has been solved. Methods mainly use

the 3D visualisation space to allow for the time dimension being added to the graph.

A method that can be used is the 2.5D graph drawing method [46, 9]. One application

of this method is to structure a graph into planes to visualise an otherwise hidden

dimension. Although this method can also be used to visualise other structure such as

clusters in the graph one main application is to show temporal snapshots of the same

graph model thus allowing the user to observe changes in the graph. An example of

such a model from an e-mail database is given in figure 5.3.

Although not on the core of this thesis also DynamoGraph provides basic means of

graph visualisation. To make data most approachable to users a web-based visualisation
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Figure 5.3: Temporal snapshots of an email database visualised using the 2.5D method
[46]

approach was chosen. The project was implemented as a state-of-the-art Java Spring

WebFlow-21 project. It enables users to access a running DynamoGraph cluster and

provides tools for day to day data analysis tasks. This includes import of datasets (see

also section 5.5), execution of distributed algorithms, and visualisation of graphs.

For visualisation the same restrictions described above hold such that also the Dynamo-

Graph web-UI is able to displays graphs only up to a certain size. Administrators are

able to configure this size during application setup. Currently graphs up to 200 to 500

vertices are still readable depending on the available screen sizes. For models larger

(and even significantly larger) than that two approaches exist in the prototype.

Firstly, local neighborhood analysis can be used. In this mode general statistics (clus-

ters, PageRank) are computed over the graph over the complete timespan available.

From that certain interesting vertex-candidates to start neighborhood analysis are pre-

sented in a list. Such interesting vertices are the top-k ranked vertices according to

PageRank or by vertex-degree. Alternatively users can directly search for vertices with

certain attributes (vertex-id, name, etc.). From a selected starting point the neighbor-

hood of the starting point can be loaded and visualised. Depending on the application

scenario multiple levels of neighbors can be loaded (see the network query algorithm in

section 3.8.3).

1Spring WebFflow-2: http://projects.spring.io/spring-webflow/

http://projects.spring.io/spring-webflow/
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Figure 5.4: Calls and SMS from the MIT Reality Commons Network: Friends and
Family [3]

Secondly, a fast clustering algorithm can be used to compute the network of clusters for

the overall graph. For this the implementation discussed in section 3.7.4 is used. This

allows the creation of several layers of cluster structure. Starting from the top layer the

user is then able to dig deeper into the graph structure by navigating down layers on the

graph stack. As this method is comparably complex software wise the implementation

was outsourced as a supervised bachelors thesis titled Layered Visualisation for Large-

Scale Temporal Graphs in DynamoGraph [92].

In any case DynamoGraph provides a histogram over the number of edges available in

segments of time as a measure for users to find time-frames of higher or lower activity

in the graph. Users can use the histogram to narrow the timeframe which is visible in

the visualisation. An example of a network displayed in the DynamoGraph web-view

is given in screenshot 5.4. It depicts a dateset from the MIT Reality Commons which

contains edges of two types for phone calls (green) and SMS (purple) [3] (see appendix
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Figure 5.5: IRC Network with computed communities

B.1 for details on this dataset). The network was automatically layouted using the

ForceAtlas2 [50] algorithm. At the bottom of the screenshot the edge histogram is

displayed. It marks the frames of time with higher and lower activity. Some time-slots

have no or almost no activity. This is due to the data collection process which was not

done continuously.

Also in the screenshot basic information about the graph is displayed on the upper

right corner. When a graph model is loaded by the user interface certain basic statis-

tics are computed. One can also notice that the PageRank metrics are still blank in

the screenshot. PageRank has a tendency for long runtime such that this metric is

computed in background and the values become available only after the superstep run

has completed on the cluster.
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Figure 5.6: The namespaces view shows all datasets currently loaded on the cluster

A similar visualisation is presented in figure 5.5. It shows around 950 nodes from an IRC

communication network [28], while the same visualisation technique was used a very

different image was generated. Firstly, the vertices are colored in many different colors.

Each color refers to a cluster / community and vertices of the same color belong to the

same community (colors are repeated from a table). Secondly, comparably small edges

got assigned an edge weight below 1 such that they are not visible in the visualisation

anymore. This is configurable behavior and was turned on for this visualisation to avoid

a hairball.

The user interface provides further options to work with a DynamoGraph cluster ac-

cessible through the top menu:

Namespaces allows the user to access a list of all graph models currently loaded on

the cluster. The obvious operations are to load the model into the workbench view or to

delete the model from the cluster. In this sense it gives a similar set of operations a user

interface for a database management system would give for databases (see screenshot in

figure 5.6). It serves as the navigation entry-point for users to access loaded datasets.

It serves as the navigation entry-point for users to access loaded datasets.

Data / List data-sources can be used to load datasets onto the cluster. As explained

in greater detail in the upcoming section 5.5 a sophisticated mechanisms to import static

and dynamic data-sources into a DynamoGraph instance are supported. The dataset
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Figure 5.7: All currently configured datasources

view (see screenshot in figure 5.7) provides an overview over all such configured data-

sources. Users are able to select and configure a data-source in order to upload it into

a namespace on the cluster.

Monitoring finally provides information about the running cluster. Most interestingly

there are general metrics about currently executing and previously executed algorithms.

This view provides a quick overview over a clusters current processing status. In the log

table users are able to click individual records to inspect the algorithm run in detail. For

completed algorithms the detail view displays the contents of the SuperStepContext

whic refers to the global state Γ of the algorithm (see section 3.4.1). This mechanism

can be used to report results of algorithm runs back to users. Further it can be used to

execute arbitrary algorithms. As depicted in figure 5.8 a set of predefined supersteps

can be selected.
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Figure 5.8: Log of the last algorithms scheduled on the cluster

Together with the distributed cluster system the graphical user interface completes the

DynamoGraph tool-chain. It is a first step towards making a system like the presented

accessible to administrators, developers, and in far future perhaps also to end users.

The complexity of the cluster setup is hidden from the user.

5.4 Setup and Configuration

As already discussed in greater detail in the previous sections and chapters there are two

base components in DynamoGraph that need to be installed to form a working cluster:

a single master node and at least one but possibly many worker nodes. The master

node have shown only insignificant workload in tests such that the default provisioning

model uses the master also as worker node.

A crucial component also required for all installations is a working instance of Apache

ZooKeeper which is used for distributed configuration management and coordination.

Additional optional components are a persistence backend and a graphical user in-

terface. Depending on exact configuration persistence can require a working Apache

Cassandra key-value store to be installed. The graphical user interface described in sec-

tion 5.3 is a Java Servlet based web-application and thus requires a configured Servlet

container for roll-out.

During tests and evaluation of DynamoGraph the software was setup in different con-

figuration scenarios oftentimes. Such that for evaluation it became necessary to fully

automate the software installation which is described in greater detail in the following.

The automated roll-out is described in greater detail in section 6.3.3.
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Most of the components of DynamoGraph are built in Java 8. Also the dependencies

(ZooKeeper, Cassandra, etc.) are built on top of Java technology. This means that all

hosts running any component of DynamoGraph require a Java 8 JRE installation.

5.4.1 Apache ZooKeeper

The central instance of configuration and coordination is an installation of Apache

ZooKeeper. In the default case ZooKeeper can be installed alongside with the master

and a single worker instance on a single machine. For ZooKeeper no extensive con-

figuration requirements are given. DynamoGraph was developed and tested against

ZooKeeper version 3.4.8 which can be downloaded in a vanilla distribution for Linux

directly from the project website2.

In order to run ZooKeeper on a Linux machine the vanilla release needs to be unpacked

and a configuration file must be created. The configuration file requires the mandatory

configuration attributes ticktime which denotes the heartbeat time in milliseconds,

dataDir that specifies where ZooKeeper can store its persistent configuration database,

and clientPort. The vanilla release of ZooKeeper provides a sample configuration file

with useful defaults that can be safely used with DynamoGraph.

DynamoGraph usually have their ZooKeeper installation living inside of /opt/-

zookeeper and automatically launch the instance on machine boot by executing /op-

t/zookeeper/bin/zkServer.sh start.

5.4.2 DynamoGraph Master and Workers

As soon as ZooKeeper has started a master and possibly multiple workers can be

installed. Both software components are implemented in the distributed subproject of

DynamoGraph. These components in general follow two paths of configuration. There is

static configuration which is parsed and applied from a Java properties file and dynamic

cluster configuration which is negotiated, stored and retrieved via ZooKeeper.

The properties file can be located in /etc/dynamograph/global.properties and in

the users home /.dynamograph/global.properties. It contains general configu-

ration settings which are meant to remain static during a cluster run. In prac-

tice the configuration file is parsed in regular time intervals to allow some of the

configured attributes to be adapted during runtime. Typical settings found in

2Apache ZooKeeper Releases: https://zookeeper.apache.org/releases.html

https://zookeeper.apache.org/releases.html
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global.properties are the number of slots (threads) to be preallocated for each

worker (SLOTS_PER_WORKER), behaviour in case of node failure, optional configuration

of persistence backends, and log settings for individual components.

Node failure behaviour describes whether or not backup partitions are to be created

on the worker machines. If a failover scenario is configured failure of individual worker

nodes or even the master can be compensated by the system to a certain extent. If a

worker fails the PartitionManager component is able to redistribute the data stored

in DynamoGraph, if the master fails the worker are able to elect a new master to allow

for continuous use of the system.

The configuration file also contains the IP-address or hostname (ZOOKEEPER_HOST) and

port of the ZooKeeper server. On application startup the application initializes ac-

cording to the configuration file (slot, persistence backend, etc.) and then queries the

ZooKeeper node /Master to retrieve the service endpoint of the master. If /Master

is not available on ZooKeeper this means that the cluster has just started or that the

master has failed. In either case a new election process is initiated (see section 4.3.1 for

details). Workers register their own service endpoint under ZooKeeper node /Workers/

which is a path that is monitored for change by the master. This way configuration

changes in the cluster setup (addition or removal of workers) can be registered by the

PartitionManager component and the master is able to react accordingly. In case

a distributed component is started and no configuration file can be found a cluster

with sensible default values (transient mode with 4 threads, assuming ZooKeeper on

localhost with default port) is started.

In typical setup scenarios the distributed subproject is started on multiple computers

in sequential order such that the first machine that launches the software component

becomes master and all consecutively launched machines become workers. Depending

on the configured cluster size and the time between the individual computers starting up

and registering with ZooKeeper multiple reorganisation steps are executed. Such that

it is advisable to allow the system to settle before uploading data to the cluster. The

API allows to query the current cluster status such that even for a client observing the

cluster no guesswork is involved in determining if all workers have properly started.

A binary assembly of the distributed project contains an executable JAR file and service

scripts that allow administrators to register DynamoGraph as a Linux SysV service.

It is strongly advised to use the init script since extensive Java JVM configuration

parameters such as maximum memory and remote method invocation bindings are

specified by the script. Without these settings the cluster will experience a severe

performance impact. The service script can be copied to /etc/init.d/dynamograph
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which allows for the service to automatically launch at system startup or to start it

manually with service dynamograph start.

5.4.3 Optional Persistence Backends

In the DynamoGraph global configuration optional support for persistence backends

can be specified (PERSISTENCE). Currently the options None for transient/volatile

mode, JSON_Files for storing vertices in individual JSON files, and KeyValue-

Store_Cassandra to use an Apache Cassandra cluster are available. In the case of

Cassandra it is advisable to run the instances of a Cassandra ring on the same ma-

chines as the DynamoGraph cluster. Cassandra supports extensive concepts for data

locality and replication such that worker nodes can connect their local Cassandra in-

stance and be sure that all vertices living in the workers partition are also stored on

the local Cassandra partition. This avoids unnecessary network round-trips.

Cassandra clusters are organised in so called rings where data stored to a partition is

automatically replicated to other partitions with configurable replication, locking, and

commit behaviour. Due to this architecture each individual instance in a ring can be

used as a server to clients. Since in a key-value persistence scenario it is assumed that

the underlying storage framework is responsible for data replication, DynamoGraph is

disabling failover features when running in KeyValueStore_Cassandra mode.

If non-standard behaviour for Cassandra is used (i.e. re-use of an already

existing Cassandra cluster) then the Cassandra service endpoint can be speci-

fied in the DynamoGraph configuration (PERSISTENCE_CASSANDRA_PORT, PERSIS-

TENCE_CASSANDRA_HOST).

5.4.4 Optional Web Interface

The optional web interface is acting as a regular DynamoGraph client. This means it

connects to the cluster using the Client API. From an architectural point of view the

web UI can run on any Servlet container and requires only network connectivity to the

cluster. The application is standards compliant and as such can be configured via web-

application contexts. The application itself provides a default context which can be

overridden by the Servlet container. DynamoGraph was implemented and tested using

the Tomcat 8 Servlet engine, which allows to provide external context in its installation

path $TOMCAT_HOME/conf/Catalina/localhost. The web interface is implemented in

the frontend project. This means a context configuration called frontend.xml can be

created in the aforementioned path to override default configuration parameters.
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In general there are two options to configure cluster connectivity. By either directly

specifying an DynamoGraph API endpoint in giving the RMI host and port where

a DynamoGraph master is running or in specifying a ZooKeeper configuration which

can be used to automatically lookup the Client API endpoint in the ZooKeeper node

/Master. Obviously the second option is more robust in terms of a failing master

component. However, in other scenarios, such as during development or if the service

is made available through a public IP address, direct connection to a cluster might be

preferable.

Listing 5.1: Example Frontend Context

1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <Context >

3 <Manager pathname="" />

4 <!-- ZooKeeper Configuration -->

5 <Parameter name="zookeeperHost" value="localhost" />

6 <Parameter name="zookeeperPort" value="2181" />

7 <Parameter name="useZookeeperDiscovery" value="true" />

8 <Parameter name="rmiHost" value="140.78.92.57" />

9 <Parameter name="rmiPort" value="1201" />

10 </Context >

In listing 5.1 an example context is given that shows both configuration variants. The

parameter useZookeeperDiscovery can be used to switch between the two described

behaviours and is on by default. Line 5 and 6 show the configuration from a test clus-

ter where Tomcat and the web UI were installed alongside ZooKeeper and the master

component on the first provisioned compute node in the cluster. Hence a ZooKeeper

discovery of configuration can be performed on localhost. In lines 8 through 9 the

direct configuration of our public DynamoGraph service used during evaluation is spec-

ified.

5.5 Data-set Import

Since the presented distributed computing platform and the web-based user interface

discussed in previous sections are research prototypes it is an important requirement to

quickly import, visualise and analyse data. Scientific datasets as explained in appendix

B are often available as flat files for easy import to databases, and other data processing

tools. The files are often formatted as CSV, XML, and JSON. Other data-sources are

continuously sending new data from a live system (such as Twitter). Thus integrated

with the web-based DynamoGraph platform an import utility was built.
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The import tool is configured with a list of static and dynamic data sources. Users of

the platform can chose any data source and import it to a namespace in DynamoGraph

for processing. Static data sources are files that can be imported once. DynamoGraph

currently supports CSV, and JSON import. An example for this would be the CSV files

available from the Click Dataset [74] (described in detail in appendix B.3). Dynamic

data sources are implemented as Java classes that continuously stream new data to the

system. An example for this would be a service that retrieves Tweets with a certain

hashtag live from Twitter and adds the information to the assigned namespace.

Administrators running the DynamoGraph platform are able to describe datasources

in XML based configuration files. The system reads a file called dataSources.xml from

the web containers resources path. This file contains a list of filenames of XML files

that describe a single datasource in detail.

Each datasource description file is structured as follows. The XML root element is data-

Source with the mandatory attributes name, resolution, and type. The name attribute

denotes a human readable name that is displayed in the system for the user. resolution

specifies the namespace that needs to be used for importing the data. Finally, type

specifies whether the datasource is Static or Dynamic.

As a child element to dataSource a description element needs to be specified that

provides textual description of the data provided by the data source. Again this infor-

mation is being displayed in the DynamoGraph platform user-interface.

Further any number of component elements can be specified as children to dataSource.

In the case of a static datasource the component denotes the datafile and instructions

on how to read the data. In case of a dynamic datasource the component refers to a

Java class name that implements the dynamic importer interface. A component has

a mandatory name attributed and a source attribute which in the case of a static

datasource denotes the file format used. Further the following XML child elements can

be specified:

locator: The locator attribute describes how the system can access the datasource. In

case of static file sources the locator can be a URL pointing to the file, or a path

pointing to the file on disk. Paths can be prefixed by res: to denote that the

path is relative to the application containers resources and points to a data-file

that is shipped with the DynamoGraph installation.

colorCode: For visualisation purposes DynamoGraph supports the use of HTML color

codes to color vertices and edges. Visualisation components in the web-based

workbench read this attribute. In the case of multi-graphs the visualisation can



Usage of the Distributed Processing Framework 126

be configured to merge parallel arcs. In this case a color mixer automatically

finds mixed colors for the merged arcs.

type: Each component has a string denoting the edge type of any arc that is resulting

from said component. In the case of a multigraph data from different sources can

be imported as parallel arcs. For instance a dataset containing a social graph

from voice-calls and SMS can have parallel edges for calls and SMS.

weightCorrections: The weight correction is a float number in ]0, 1] and defaults to 1.

In the case of a multigraph the weighting of edges of different type can be specified

through weight corrections. To reuse the example of voice-calls and SMS one

might assume that a voice-call causes a higher degree of social interaction than a

SMS and thus might chose to weight voice-calls with 0.7 and SMS with 0.3.

configuration: Finally a text property configuration can be used to specify any other

configuration parameters for the component. The text property is passed to the

resource locator responsible for reading the data and is interpreted by the software

component that performs the actual import process for the data component.

In the case of CSV files the configuration property will describe the columns

found in the CSV data and allows to specify a column delimiter. For JSON files

the configuration property can be used to specify which attributes in the JSON

document contain the temporal graph data.

An example of a static datasource is given in listing 5.2. It describes how a preprocessed

subset of the data available in the Click Dataset [74] can be imported to the cluster.

The file denotes that the preprocessed data is available in months resolution and is

static and consists of a single component. The component can be imported using the

CSV importer and the configuration property describes that column 0 and 1 contain

the vertex ids which form the networks edge list. Through the property locator the

import component is instructed to pull the listed CSV files through the HTTP protocol

from the specified locations and import them one by one.

Listing 5.2: Example Configuration for a Static Data-Source

1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <dataSource name="Indiana University Click Data HTTP Pull"

resolution="Months" type="Static">

3 <component name="Clicks" source="CSV">

4 <configuration >source :0; target :1; sourceName :2;

targetName :3; weight :4; timestamp :5; skipFirst:

false;</configuration >

5 <locator >https :// dynamograph.net/click /2006 -09-out.csv ,

https :// dynamograph.net/click /2006-10 -out.csv ,https
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:// dynamograph.net/click /2006-11-out.csv ,https ://

dynamograph.net/click /2006-12 -out.csv ,https ://

dynamograph.net/click /2007-01 -out.csv</locator >

6 <colorCode >#2BAA6B</colorCode >

7 <type>Click </type>

8 </component >

9 <description >

10 53.5 billion HTTP requests made by users at Indiana

University

11 </description >

12 </dataSource >

In contrast in listing 5.3 the description for a dynamic datasource is presented. This

datasource describes that Tweets on certain topics (hashtags) are to be received. The

datasource is defined as to store data in hourly resolution and listens only for the

hashtags Apple, Microsoft, and Google from the microblogging platform. The config-

uration property is intentionally left blank in this example. It will contain the account

information of the Twitter API user (API key and password) which is used to login at

Twitter.

Listing 5.3: Example Configuration for a Dynamic Data-Source

1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <dataSource name="Twitter Hashtag Reader" resolution="Hours

" type="Dynamic">

3 <component name="Tweets" source="net.dynamograph.twitter.

TwitterComponent">

4 <configuration ></configuration >

5 <locator >#Apple ,#Microsoft ,# Google </locator >

6 <colorCode >#2BAA6B</colorCode >

7 <type>Tweets </type>

8 </component >

9 <description >

10 All Tweets concerning the three tech giants.

11 </description >

12 </dataSource >
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5.6 Case Studies

To demonstrate practical usability of DynamoGraph several experiments were con-

ducted in real-world scenarios. Some of these experiments where case-studies with the

purpose of showing that the framework can be used in a real-world application scenario.

Other experiments were conducted under closer monitoring of the system to describe

properties and behavior of the system in larger details. The latter are discussed in

detail in chapter 6.

The case studies discussed in the following sections use DynamoGraph as a processing

platform. They not necessarily compute over large-scale datasets but show that the

framework can be integrated into larger software systems. Mostly the data is imported

to the framework using the import mechanism discussed in section 5.5 and visualised

by the web-based user interface (see 5.3).

Both case-studies are of scientific interest in two different communities. The first case

study addresses learning network analytics in the context of modern learning platforms.

Graphs originating from such systems will in the future scale to very large sizes. The

second study addresses political networks as observed through Open Data interfaces.

Also these networks observed on a global scale and in more detailed nuances can scale

to very large sizes.

5.6.1 Global Social Learning Network Analytics

In the 21st century learning increasingly happens on the social web. Learning is evolving

from an organized, class-room activity with clear roles for all participants (learners, in-

structors, etc.) and thus also a clear flow of information, to an unstructured interactive

social process. In this process participants learn about topics of their interest, skills,

and aptitudes in patterns suitable to their personal learning style, using a multitude of

inhomogeneous systems.

All the actors involved in learning (learners, instructors, authors, etc.) and their in-

teraction with each other or their interaction through stigmergy on learning artefacts

forms a temporal multi-graph. Assuming one were able to record the global graph of all

learning interactions this would result in the temporal data structure called the global

social learning network.

Analytics on top of this data structure is interesting on two different scales: (1) On a

local level the learning network and their temporal evolution of individuals can show an
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individuals progress through different topics. This network is called the personal learn-

ing network (PLN) it gives insight into the skills and topics an individual is interested

in, and allows to reason about how well a certain individual is interwoven with other

individuals and topics. (2) On a global level however graph algorithms for can be used

to put individual PLNs in context. For instance community detection algorithms can

be used to determine the communities of topics found in the global learning network.

The found communities can be used to suggest new learning paths.

In the theories subsumed as connectivism social interactions play the key role in the

process of learning. Knowledge is acquired by a learner through interaction with her

PLN. Interaction can and will often happen online, not only in a formal learning plat-

form but also informally using all sorts of services found in the social web (Facebook

Twitter, YouTube, Google Documents, Office 365, etc.). This leads to a situation where

the data from these inhomogeneous systems becomes hard to collect and analyze.

This problem however can be overcome through the application of the Experience API

(xAPI). It uses formal statements to describe learning interaction i.e. actor X answered

to question Y, asked by Z. These statements are either generated directly by learning

systems that support this standard (for instance Moodle), or are derivated through

scraping data from other systems such as Facebook groups.

The Institute of Telecooperation together with the partner Research Studios Austria

FG designed an architecture to bridge the gap between xAPI statements and their rep-

resentation as a temporal multi-graph on top of DynamoGraph. An overview of this

architecture is shown in figure 5.9 and was also published in [39]. The current outcome

of these efforts are research prototypes capable of importing xAPI data into Dynamo-

Graph. This illustrates how an xAPI proxy component can be installed between xAPI

statement generators, such as mobile applications, learning management systems, and

scrapers that pull data from online social networks and a learning record store (LRS).

The proxy operation is transparent for the learning process. This means that xAPI

statements are forwarded without manipulation to the LRS. This means storage of

learning artefacts, and learning interaction is still working as intended.

The proxy component however is capable of filtering the xAPI statements and is capable

of translating user interaction into DynamoGraph API calls. Many of these proxy

components can be used to support distributed homogeneous installations of learning

systems and LRS. As DynamoGraph is scalable it can run in a cloud-based environment

such that a large number of proxies can stream data to one central installation. This

central installation refers to the global social learning network.
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Figure 5.9: DynamoGraph in context with learning systems

Learning analytics toolkits can use functionality provided by DynamoGraph to visualize

the data and to compute graph metrics on top of the network.

5.6.2 Temporal Political Network Analysis

A category of interesting temporal networks are political networks. These are formed

on different levels of the political discourse and can provide a variety of exciting new

insight. On a large scale online social networks such as Facebook [62] and Twitter [48]

provide an interesting source for the automated analysis of political discourse.

If the lens is focused on a different point in the spectrum of political discussions then

the discourse in official legislative bodies plays an important role. Especially in repre-

sentative democracies the legislative bodies are the only instance directly responsible

for policy making. Lately many initiatives make a move towards more transparent

governmental structures which can be summarized as the Open Data movement. Open

data can be coarsely categorized into political and social data, economic data, and

operational and technical data [51] all of which are made available publicly to foster

insight into otherwise in-transparent systems.

One of the oldest tools for increased transparency in parliamentary democracies are the

transcripts of political debates. As means of documentation and later audit of discussion

transcripts have been in place for many years. Usually these transcripts are created

during debates by stenotypists, are then typeset and published as continuous volumes.

Depending on country these transcripts have traditionally been made available to the

general public through public libraries, and later with the advancements of technology

through newspaper. As technology continued to advance today for many governments

these transcripts are available for political professionals via e-mail subscription or as

an Open Data service to a general audience.
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Extract Transform Load Process Visualize

Figure 5.10: General structure of the processing pipeline

Although the availability of transcripts already creates a high degree of transparency for

the democratic decision making process these still have some detriments. The general

public will usually not be able to process all the transcripts simply due to the sheer

volume of information making it to time consuming to process all the protocols. Direct

analysis of the transcripts thus remains the task of professionals such as researchers,

journalists and political analysts.

Further, simple statistics are hard to be made over the available text. Even professionals

might find it difficult to keep track of the meta information of the political discussions,

such as how often elected representatives engage in political discourse.

Finally, transcripts are pure text. From this text it is hard to derive the political

structures inhibited in the political bodies. Even for professionals it might be sometimes

hard to reveal the interweaving of policymakers in the network.

To make the data comprised in the transcripts of the Austrian parliament more acces-

sible a case study with the tools provided by DynamoGraph was conducted and later

published as a paper titled Making Computers Understand Coalition and Opposition

in Parliamentary Democracy [106]. For this system a data processing pipeline was

built that automatically pulls the HTML and PDF transcripts available as Open Data

service3 and extracts all discussion blocks (see also figure 5.10). The discussion blocks

of parliamentary discourse are annotated by the stenotypists of the Austrian parlia-

ment. The HTML transcripts already contain these annotation such that speakers and

their general position in the discussion (pro or contra) is indicated in the data. These

two steps are specific to this case study and are implemented without the support of

DynamoGraph tools.

Further processing is then conducted inside of DynamoGraph. The data is loaded into

a namespace and then in a processing phase a label propagation community detection

algorithm and general metrics over the data are computed. To make the application

possibly available for a general audience the visualisation phase is again implemented as

a stand-alone web-application that is able to visualise the computed metrics. As shown

in the screenshots in figure 5.11a and 5.11b these metrics can be general information

such as the general presence or absence of clubs and individual politicians from debate

in certain periods of time.

3Austrian Parliament Session Transcripts: https://www.parlament.gv.at/PAKT/STPROT/

https://www.parlament.gv.at/PAKT/STPROT/
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(a) Overview over a period (b) Politician profile

Figure 5.11: Prototype screenshots

(a) 22nd period (2002 – 2006) (b) 25th period (current since 2013)

Figure 5.12: Politician relation graphs

However, more interesting is the outcome of community detection algorithm for certain

time frames. In the figures 5.12a and 5.12b the 22nd and 25th period of Austrian

parliament are given. The colors of the vertices in the graph refer to the official color of

the political club the politician was assigned to at the beginning of the period. In the

22nd period the black, blue, and orange party formed a coalition after election. This

is clearly visible from the force directed layout algorithm. Also the label propagation

community detection could assign 98% of the politician profiles correctly to the coalition

or opposition community. In the 25th period the red and black parties formed coalition

and also this is visible in the automated layout and in the community labels assigned

by the algorithm. Interestingly to observe is that the cohesion in the coalition and

opposition clusters is quite different between these two periods. In period 25 coalition

was formed by left and right-wing parties that naturally had difficulties to agree on

common topics. This is also visible in the edges between the clusters that denote

discussion statements with positive impact. There are far more of these links between

the coalition an opposition cluster in 25 as compared to 22.

The presented case study shows that temporal graph data processing can be used in

scenarios having direct impact on a large audience. Although the prototypical imple-

mentation of this research prototype is still in a very early stage its potential is already
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clearly visible. This was also acknowledged by the eGovernment community as the

paper was awarded with an outstanding paper award.

5.7 Prototype Summary

In the last sections it was shown that DynamoGraph provides all functionality required

to serve as a research prototype. It was further discussed how this prototype was

already used in case studies. This demonstrates that from a software-engineering point

of view the technical feasibility of the approach is given. In the following more detailed

evaluation is presented.
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Chapter 6

Results and Discussion

The purpose of this section is to evaluate the presented computational model in the

context of real world application workloads. This is to show the general technical

feasibility of the approach, to provide assessment of the size of temporal graphs that

can be addressed by the system, and to give insight of the scalability of the distributed

computing framework. This is done by setting the evaluation objectives in section 6.1

and discussing how these objectives can be addressed by different evaluation methods

(see section 6.2). The testbeds used during assessment are described in greater detail

in section 6.3 and results conclude this chapter (see 6.4).

6.1 Evaluation Objectives

The purpose of this evaluation section is three-fold. First statements about the general

practical feasibility are to be made. This work is application oriented science and as thus

almost unintermediate use in real-world applications is a goal. As already discussed in

prior chapters, the prototype was used in case-studies. This was done with the overall

goal to survey how real-software development projects can use DynamoGraph and what

features might be missing.

Secondly it is claimed that the approach provides system scalability as the problem

size grows along network size and along the time dimension. Thus it must be shown

that the system can handle workloads of various sizes in practicable manner. Further,

some sense of scaling factors must be given as in which kinds of problem sizes require

larger compute clusters. This way prospective framework users are able to predict on

the computing resources needed for concrete cases.

Finally, performance analysis is required. It must be shown that the addition of com-

pute resources allows to compute certain tasks in shorter time. Also for this evaluation
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objective it is important that prospective users get a sense of real computing time and

resources needed to address certain problem sizes.

6.2 Evaluation Methods

According to the evaluation objectives also the chosen methods are application oriented.

The practical feasibility was studied using the discussed application prototypes and

for the scalability and performance goals traditional real-world performance testing

with system monitoring was used. The latter was done with real-world large-scale

graph datasets for evaluation purposes after artificial graph models were used during

development time to simulate workloads with saving time on the IO intensive data

import phases. Datasets and methods are discussed in greater detail in the following

sections 6.2.1 and 6.2.2.

Over the chosen datasets consistent but artificial workloads were run. The chosen

algorithms were inspired by what is often found in related work. The workloads were

executed over real-world hardware (see testbeds: 6.3) and resource utilization, log files

and execution times were recorded for further evaluation.

6.2.1 Real-World Datasets

During the efforts of creating this thesis several datasets were used in order to prove its

findings. Since the collection of a social dataset is itself a very time consuming process,

this work mainly relies on already existing data to underpin findings.

Datasets available to research vary in size, quality of data, and the time span in which

the data was recorded. Datasets that cover large-scale linked data from various sources

are available from repositories such as the Standford Large Network Dataset Collection

[68] and the Koblenz Network Collection [61]. Both repositories focus on linked data

and only a small number of temporal graph data sets.

In the domain of temporal graph data three data collections are to mention. First of

all the Enron email database [20] which contains a large collection of e-mail communi-

cation from a real world company makes for a interesting object of study since e-mail

databases of this nature can also be found in other real world application scenarios.

For instance forensic investigators could analyse e-mail databases related to criminal

cases or companies could analyse their communication structure.
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Other datasets were created during scientific projects. One of these collections is the

MIT Reality Commons which currently contains four datasets [27, 88, 3, 72]. These

are very rich in terms of information that is contained in the data. All datasets where

collected from a reality mining background where interaction between human beings was

in the focus of research. The data recorded contains Bluetooth proximity information,

GPS trajectories, e-mail communication, data about calls and SMS, and very often also

data labels about activity and classification of relationships. From a size perspective

the MIT Reality Commons dataset do not qualify as large-scale linked data. The graphs

found in this data are usually smaller than 100 vertices.

A similar dataset can be found in the Nokia mobile data challenge [66] dataset which is

also available to researchers. It is claimed to contain also information about calls, SMS,

and Bluetooth proximity. However, this dataset could not be used since the process of

acquiring access to this dataset is overly complex.

The previously discussed address either the temporal dimension of the large scale

graphs. However, this thesis elaborates on the cross section of both. A dataset that can

be classified as large-scale, temporal graph data is the Click Dataset (IU Click Dataset)

available through the Center for Complex Networks and Systems Research (CNETS)

at Indiana University Bloomington [75]. It is currently the largest web traffic network

available to research. Compared to other large graph datasets they way the data was

collected is well documented and it is clear that for certain types of HTTP traffic the

dataset is also complete. This is in contrast with e.g. random walks on social networks

which are used to crawl data. The quality of the data cannot be rated by outside

observers.

For more details on the datasets used during evaluation, descriptions, structuring, and

information on how to obtain them, the interested reader is referred to appendix B. For

assessing scalability and performance parameters of DynamoGraph mainly the Enron

email database and the IU Click Dataset were used since these are real world datasets

of significant size.

6.2.2 Artificial Graph Models

In certain situations artificial graph models are a better option for testing graph pro-

cessing systems. This is especially the case for situations where loading real world

datasets takes up too much time and in situations where aspects of very large scale

datasets are to be tested. As discussed in section 6.2.1 real world temporal graph data

available for research is often to small to qualify as large-scale dataset (Big Data).
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Artificial graph models formally describe the process of building a network. This formal

description can be applied to an arbitrary number of vertices thus allows us to create

networks of very large sizes. Artificial graph models feature parameters that can be

used to control the process of graph building. Parameters for instance are the density of

the graph and the probability that any two vertices are connected. In research artificial

graphs are often used to test graph algorithms. Since certain parameters about the

graph are know prior analysis these parameters must be visible as outcome of graph

algorithms. The influence of certain parameters (e.g. the probability that any two

vertices connect) can be studied in the context of metrics such as the average vertex

degree and the graph diameter.

The parameters are designed in a way that they can be computed on naturally observed

graphs. For instance the probability of any two vertices being connected can be deter-

mined in a given graph. This allows one to model artificial graphs closely after natural

graphs such that artificial graphs resembling a social network can be generated.

The most famous model for artificial graph generation is the Erdős-Rényi random graph

model [30]. The model describes a probabilistic process of selecting a random graph

from the set of all possible graphs of a certain size. In practice this model can be

implemented by initialising a graph of a defined number of vertices and using a ran-

dom probabilistic function to define whether or not any pair of vertices in the graph

are connected. This model can generate directed and non-directed graphs. A trivial

implementation of this model can iterate over a defined set of vertices and choose a

pair (or in the case of a directed graph an ordered pair) of vertices from the graph at

random.

In a computer simulation it is trivial to use the Erdős-Rényi random graph model

to generate an temporal graph model which for instance resembles a social network.

This is done by monitoring the Erdős-Rényi process and assigning time labels on edge

insertion. This will result in a temporal graph that behaves similar to a social network

that communicates at a random pattern. The graphs produced by this generation model

are different from real world graphs mainly in two aspects: (1) Since the probability

of two vertices being connected is random and independent there is no local clustering

as often observed in real-world networks. The resulting graphs have a low clustering

coefficient. (2) Further in Erdős-Rényi no hubs are formed i.e. no nodes that act as

brokers between clusters are found. Formally this refers to the fact that Erdős-Rényi

graphs have a vertex degree distribution which converges to a Poisson distribution

rather than to a power-law as observed in many real-world graphs. This means that

an artificial temporal network generated according to Erdős-Rényi cannot be used to

analyse the outcome of temporal graph algorithms. It can however be used to reflect
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on the runtime behavior of graph algorithms and the scalability of graph processing

systems.

In real world networks a property called the small-world property is most often found.

As described by Watts-Strogatz one can label a graph small-world [121] if short average

path lengths and high clustering coefficients are observed. The Watts-Strogatz model

argues that there are random graph models for graphs with out randomness (regular

graphs) and graphs with maximum randomness (i.e. Erdős-Rényi random graphs).

However, real world graphs are somewhere in-between. A random graph construction

is proposed where the starting point is a regular ring lattice of size N with each vertex

connected to K neighbors on average. The algorithm constructs this initial network in

a way that the maximum distance of vertices is limited. Assuming that the vertices are

labeled v1, v2, . . . , vn this means that vertices are only connected if the vertices index

i < j and |i − j| is below a configured boundary. This results in a graph with strong

local clustering. The process then continues to iterate through all edges of all vertices

and rewires with a certain probability β under the condition of avoiding self-loops and

link duplication. The rewiring process introduces randomness in the graph and creates

so called short-cuts which later make for the small-world property of the graph. By

conducting an endless number of rewiring iterations the graph converges towards an

Erdős-Rényi random graph.

From the process described by Watts-Strogatz one can deduct that the graphs will

closer resemble graphs found in nature. However, the process makes it more difficult

to create a temporal graph. Iterations of the process will not add to the graph or

reflect to the temporal development of the graph but will only introduce more nuances

of randomness.

The problems with Erdős-Rényi random graphs and the Watts-Strogatz graph model

where later picked up by the Barabáss-Albert preferential attachment model [5]. In their

work it was discovered that neither of the aforementioned methods cover the evolvement

of networks accurately. In turn a model is proposed that relies on the assumption that

real world networks possess a degree distribution that follows the power law. Barabáss’

and Albert’s central assertion is that scale-free networks can be constructed what is

called preferential attachment. This means that edge added to a network are more

likely to connect to vertices with higher vertex degree. The model assumes that the

probability that a vertex V attaches to vertex W is proportional to the degree of V and

W . The process is covered in very many details and covers aspects such as different

non-linear models of preferrential attachment as found in natural networks and the

initial attractiveness i.e. the probability that an isolated vertex gets connected to the

graph.
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In the context of large-scale temporal graphs the Barabáss-Albert preferential attach-

ment model again describes an iterative process which can also be used to construct

a temporal graph. During the process of inserting new edges (or arcs) time and date

labels need to be attached at random or following a certain pattern.

In practice for the models presented many different implementations exist. In order

to use them for experiments one can rely on readily available software packets. Two

software packets important to mention are the graph generator functions [84] that come

with NetworkX a graph analysis system implemented in Python. The project supports

generation of many different types of graphs.

6.3 Testbeds

The prototype was tested in cloud based environments. During evaluation the cloud

stacks described in the following were used. One can easily roll out the software on other

cloud stacks as long as Java and the possibility for private networks is available. In

section 6.3.1 an private cloud installation available at the Institute of Telecooperation at

the Johannes Kepler University Linz is described. Section 6.3.2 reflects on the learnings

from using the Amazon AWS public cloud.

It is important to note that the evaluation results always need to be seen in context

of the used cloud system. For private cloud installations one is able to observe the

system in much greater detail since the physical hardware running the cloud stack can

be observed and it is possible to understand the workloads of other users using the

same system. This is not the case for public cloud installations. In general a public

cloud provider offers only very high level meta-data about the virtual machines and

physical roll-out of these machines in the cloud stack. This means one has no means

whatsoever to understand the workloads of other users on the same hardware. On the

other hand public cloud installations offer the possibility to run very large setups of

cluster systems since the cloud providers allow one to scale the system on demand to

clusters of hundreds or event thousands of machines which is not feasible in an on-

premise approach. Consequently during the evaluation of DynamoGraph the private

cloud installation was used to demonstrate the scalability of algorithms written in the

framework and to analyse performance. The public cloud was used to demonstrate that

the software provided in the DynamoGraph project is of high practical relevance and

can be put to immediate use in real-world software projects.
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6.3.1 OpenStack Private Cloud

The OpenStack1 based private cloud installation available at the Institute of Telecoop-

eration (see A.2 for exact software versions) was specifically purchased and designed to

run research projects in the cloud computing and big data domain. Thus no software

tools in production state run on the system and researchers are able to reserve the sys-

tem exclusively for a certain amount of time which was made use of during evaluating

DynamoGraph.

The available cloud-stack is comprised of three servers and a network-attached storage

system. One server is acting as the front-end node for the system and runs the cloud-

stack management software. It is the end-point for users to roll-out virtual machines

on the system. The remaining servers act as compute nodes and are both equipped

with two 6-core Intel(R) Xeon(R) X5690 CPUs running at a clock rate of 3.47GHz and

144GB of random access memory. This sums up to 24 physical CPUs and 288GB of

RAM available for experiments. In the configuration of the system it is made sure that

virtual machine disk images currently used by the system are stored on local storage,

the network-attached storage system is used for backup and storage of datasets only.

All the machines are running the open source operating system CentOS 7. The virtual

machines are run on top of the Linux standard KVM2 (Kernel-based Virtual Machine)

hypervisor. KVM is widely adopted by practitioners to run virtualised software stacks.

Further, KVM is the default hypervisor for OpenStack which provides in depth support

for many of the features provided by KVM (memory ballooning, CPU over-provisioning,

etc.).

Networking in the described cloud stack is implemented through the software defined

networking service OpenVSwitch3 which is also the default option for networking in

OpenStack. OpenVSwitch is a multilayer open source virtual switch. It operates on

layer 2 of the OSI network model and acts as and integrates with regular self learning

layer 2 switches. This means that OpenVSwitch can be used to emulate Ethernet net-

work segments. In the context of cloud computing it becomes possible that individual

projects and software roll-outs are assigned their own private, switched Ethernet net-

work. This minimises the risk of interference between individual software installations

on the cloud, given the underlying physical network layer provides enough bandwidth

to accommodate the workload of the virtual networks.

The network stack configuration used here creates some peculiarities that also become

visible in the evaluation results. OpenVSwitch links which resulted in virtual machines

1OpenStack: https://www.openstack.org
2KVM (Kernel-based Virtual Machine): www.linux-kvm.org
3OpenVSwitch: http://openvswitch.org

https://www.openstack.org
www.linux-kvm.org
http://openvswitch.org
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Run VMs}
} Stores VM Images

Figure 6.1: Schematic of a typical IaaS cloud installation

communicating on the same bare metal host do not need to travel through a physical

network. Network traffic can be passed between virtual machines in-memory. This

leads to network speeds well beyond 10 gbps. In the cloud installation a dedicated

hardware switch was used to interconnect the bare metal hosts. This switch is an

enterprise grade 1 gbps switch. This makes virtual machine to virtual machine traffic

at least in the order of 10 times faster if both machines run on the same bare metal as

opposed to real network links are utilized.

OpenStack provides a REST based API which can be used by third party applications

to provision servers, networks, and storage. This allows to fully automate the process of

setting up infrastructure, and installing software and running software. The OpenStack

API is in wide areas compatible with the Amazon AWS EC2 API which makes it easier

for infrastructure stacks designed for OpenStack to be migrated to the Amazon AWS

Public cloud.

6.3.2 Amazon AWS Public Cloud

To allow tests under conditions one would find in a real world public cloud scenarios,

setup and roll-out routines for the Amazon AWS Public Cloud were made. The offer-

ings from Amazon were used since they are widely used by practitioners, their system

provides reasonable private network isolation, most of the API endpoints are compat-

ible with the OpenStack API and most importantly because Amazon provides grants

for research and teaching4.

4Amazon AWS Research Grants: https://aws.amazon.com/grants/

https://aws.amazon.com/grants/
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Amazon AWS provides data-centers around the globe and allows its customers to dy-

namically provision compute resources in any of the provided locations. The AWS

cloud further features a product called the Virtual Private Network, which is a soft-

ware defined network stack that allows AWS users to create virtual layer 2 Ethernet

networks that even span multiple of Amazon’s data-centers.

It is known that the hypervisor which powers AWS is based on the Linux Xen hy-

pervisor. In general AWS provides a very similar feature set compared to OpenStack.

Such that creating cloud-based software compatible with these two stacks creates only

minimal overhead. The application roll-out described in the following thus has be used

for scalability and performance testing on top of the OpenStack private cloud, and for

technical feasibility testing on top of Amazon AWS.

Due to commercial and time restrictions and the upfront investment into the private

cloud installation already made, no performance and scalability tests were conducted on

top of the public cloud stacks. Especially the evaluation with the larger dataset would

have cost of around $2000,−− per month as estimated by calculator tools provided by

Amazon AWS.

6.3.3 Application Roll-out

In order to roll out the experiment installations on top of OpenStack and Amazon

AWS a cloud agnostic middle-ware system was used which was also developed at the

Institute of Telecooperation [107]. This allowed to fully automate the process of run-

ning evaluation runs which usually consisted of provisioning servers and networks in

the cloud, rolling out a cluster installation, uploading a dataset, running the software,

monitoring the system, collecting the results and tearing down the provisioned infras-

tructure. In order to avoid unexpected results from possible caching and optimisation

by the used operating systems and cloud-stacks all used virtual machine instances used

in an experiment run were created from scratch and deleted after each run.

On top of the middleware and the APIs provided by the cloud stacks a set of provisioning

and tear-down scripts were created. Provisioning is done in four phases (1) network

provisioning, (2) server provisioning, (3) software and configuration management, and

(4) software execution.

Network provisioning: Cloud stacks provide software defined networks (SDN) which

allow users to describe complex network infrastructures completely in software.

The virtual network infrastructure provided by the cloud stack is by default decou-

pled from the physical transport network and topology. Servers running inside of
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the cloud stack must explicitly be connected to physical networks through bridge

ports that bridge network segments from the software defined network into the

physical network.

For in the used provisioning scripts for each DynamoGraph cluster an separate

private network segment was created in top of the SDN. In the used cloud stacks

private network segments are completely isolated from all other network segments

unless virtual routers are created that route traffic between network segments.

This network is later used to connect the master and worker nodes of the cluster.

The provisioning script also connects this private network segment to the public

Internet with a router capable of network address translation (NAT). This allows

the servers on this network segment to retrieve data from the public network (i.e.

software packages, data-sets) but the servers cannot be reached from the outside.

Software defined networks also provide mechanisms for firewall configuration and

advanced network configuration. Firewalls on routers are setup such that the

nodes in the cluster are allowed to use the ports necessary for a DynamoGraph

cluster. Further public IP addresses and host-names are obtained from a pool of

available IP addresses and the user-facing services of DynamoGraph (mainly the

API and the web-based user-interface) are made available to the public Internet

through a public IP address and TCP/IP ports being forwarded to the appropriate

virtual servers.

Infrastructure provisioning: Once the network is setup servers according to the experi-

ments size are provisioned through a script. The script uses already pre-configured

operating system images (in this case CentOS 75 with extensions for cloud stacks

and configuration management). It is first checked whether a current version of

the operating system is available on the cloud stack. If this is not the case the

image is obtained from the operating system provider and uploaded to the cloud.

With the operating system image available in the stack the script proceeds to

provision servers. The provisioning software allows parameters for the number

of worker nodes and their exact configuration (number of processors, memory,

etc.) to be specified. Configuration was varied in different evaluation runs. Once

servers are provisioned they are booted by the cloud stack, during boot apply

generic operating system configuration as supplied by the stack (network configu-

ration, hostname, user and authentication configuration, disk partitioning, etc.).

After that the servers are in running state, users can login to the machines through

the cloud stacks management interface or through secure shell (SSH) connections

established through the private network segment.

5CentOS Project: https://www.centos.org

https://www.centos.org
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Software and configuration management: The operating system image used for Dy-

namoGraph is prepared for configuration management by the Puppet6 IT au-

tomation software. All software and related configuration parameters running

inside of the virtual servers is managed by Puppet. Puppet uses a descriptive

language to describe desired system states. This system state can contain rules

for certain software packages to be installed, firewall rules to be applied, services

to run on system boot etc. Multiple rules can be compiled together to describe

the desired state of a single computer or groups of computers. These sets of rules

are called manifests. The Puppet software (Puppet agent) running on a server

parses manifests and establishes the described system state.

Directly after virtual servers have booted they read the DynamoGraph manifest.

Puppet installs all software dependencies such as ZooKeeper (on the master),

Java, and Cassandra. Then the software packages of DynamoGraph are copied

to their corresponding locations and configuration files are written.

Software execution: After all virtual servers have completed infrastructure provision-

ing and subsequently the software and configuration management phase, the

script proceeds to run the cluster software. Due to the design of DynamoGraph,

which allows for automatic election of a master role node, all servers execute the

same DynamoGraph software package. Each instance of the software connects

to ZooKeeper to retrieve configuration information and for master election. The

server running the web-based user interface is started only after a master server

was determined.

6.4 Results

At the end of chapter 5 two application scenarios for DynamoGraph were already un-

derpinned with concrete case studies. While these case studies not necessarily fall into

the category of very large-scale graphs they still illustrate how the system can serve as

a platform for temporal graph analytics. The cases were selected in such a way that the

underlying data-structures are subjective to growth. For instance in the analytics of

political networks instead of the network of a single legislative body the global political

network of multiple such instances can be analysed.

The case studies show that the mere functional requirements are well supported by

the current prototype implementation. Individual instances could get configured as

per application scenario and the software developers of the case studies could rely on

6Puppet: https://puppetlabs.com

https://puppetlabs.com
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DynamoGraph as an application framework. The requirements of the case studies were

implemented without the need to adapt code in the framework. During the extensive

development process multiple facets of the system were under test: configurability,

multi-tenancy, modularity, persistence and dynamic code loading requirements have

shown to be feasible in practical application scenarios.

Configurability was used in all case studies, for instance data granularity and persistence

modes were tested in various setups. Usually prototype development for data processing

pipelines was conducted using the transient mode where no persistence backend is used.

In later stages of the project the Cassandra backend was used to permanently store

data.

The multi-tenancy requirement was tested in initial phases of the case-studies due to

the size of the datasets used it had quickly proven that separate, local DynamoGraph

installations allowed for a simpler development process. In general for data manage-

ment the multi-tenancy approach in the system is feasible, however, current superstep

execution is implemented as a batch processing queue which means that the cluster

processes supersteps in their order of submission. Later jobs stall until earlier jobs

complete. This behavior will become a problem in production environments because a

tenant would be able to lock a cluster infinitely.

In the case of modularity it is clear that the componentized architecture of Dynamo-

Graph integrates well with other software architectures. For instance in the case-studies

not all components of the system were used. Mostly the optional web-frontend was only

used during development phases and also persistence backends were only configured as

required.

For the persistence scenario it was shown that the backend is capable of storing and

retrieving graph data. In general the datastructures composing vertices are temporal

maps which allow the application developer to store additional attributes to vertices.

This is used for instance for community detection algorithms where the community

labels are written back to the temporal map for later retrieval. What the current

implementation is missing, however, are more powerful query mechanics which would

a developer allow to manually inspect the data. For the file based backend, although

human-readable JSON files are stored, already starting with two partitions it starts

to be complicated as to where files for certain vertices are stored. The Cassandra

implementation makes use of serialization features to store non-standard attributes

which makes them non-human-readable when inspected through Cassandra data access

tools.
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Finally, the dynamic code loading feature has proven to be very practical in real world

scenarios. In typical use cases algorithms where implemented and their parameters

adjusted using the local developer mode where a single executor thread is running the

jobs in a serial controlled manner. The compiled and tuned algorithms were wrapped up

in JAR files and submitted to the cluster in order to execute real payloads. Submission,

registration, execution and de-registration of algorithm packages worked seamlessly

in most cases. Of course also DynamoGraph hits boundaries common to the JVM,

such that application developers need to make sure that no object references to side-

loaded code remain in the cluster, which would prevent the class-loader from unloading

code, and repeated loading of classes during development might hit limitations of the

permanent generation memory of the JVM. The latter one should not be a problem in

real-world scenarios where code is considered to be production stable and only loaded

once and rarely unloaded.

These case studies do not address other requirements. The datesets did not reach sizes

where resource limitations of single computers made data processing infeasible. Thus

the claimed scalability features of DynamoGraph were not under test. This is why in

the following sections two large-scale temporal graphs were used to test the capability

of DynamoGraph to scale out horizontally as larger graphs are processed.

6.4.1 PageRank over Enron e-Mail Database

As first test-drives to DynamoGraph the Enron e-Mail database was used as input

dataset. This dataset is just small enough that it would still be possible to compute

over a preprocessed version of the data on a single machine with significant amount

of memory. The experiments described in the following were computed on the private

cloud testbed described in section 6.3.1 with a work-in-progress version of Dynamo-

Graph which was still missing much of the API functionality available today and also

lacking some optimisations in data-structure access which have a negative performance

impact. The results presented in this section were discussed as first result papers in

[111] with extended results available as a Journal Paper [105].

The setup of the test-runs presented here is loading the Enron e-Mail database to

DynamoGraph and then computing PageRank over a significant timespan (Jan 2002

to Dec 2003 most of the mailboxes have traffic) of the loaded data. Such that the

system is forced to aggregate a large amount of edges prior being able to perform actual

computation. Since the same timespan is used repeatedly after the first superstep of

PageRank edge aggregations are already available in caching data structures such that

consecutive supersteps will execute significant faster. Obviously the assumption is
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Figure 6.2: Degree distributions for combined, in- and vertex out-degree

that adding more compute resources (processors) to the system will lead to PageRank

completing faster.

Before studying the results presented in figure 6.3 it is important to notice, that the

baseline shown in this paper (P1, 1 slot, 1 worker) is a non-optimised version of the

exact same algorithm used in the parallel and distributed runs. The single worker would

have a global view of the graph and would not need to perform the message passing

overhead. Since there is only one worker thread system resources such as the message

router, access to the key value store, and un-necessary partition-table lookups cause

bottle-necks.

Especially the message router is implemented as a background thread such that mes-

sage routing can be performed in parallel to local processing. However, the locking

mechanisms in this background thread perform particularly bad in the P1 case. By

default the Java API uses non-fair locks, the JVM favours keeping a lock with a certain

thread over handing control to another thread and causing a processor context switch.

If the P1 case is observed with profilers such as JVisualVM7 it becomes clear that

message queues fill up to a maximum until a context switch is enforced and a consum-

ing behavior can be started. This behavior needs to be addressed in future versions

of the framework for instance the local developer mode of DynamoGraph runs as P1

configuration. Further, it is important to state that the configuration 1 slot on 1 worker

is also clearly performing worse than a more intelligent sequential implementation of

PageRank. The speedups given in the following need to be seen in the context of this

restrictions and are relative to this P1 baseline.

It comes with no surprise that the execution of PageRank for a configuration of 1

slot and 1 worker (see P1 in figure 6.3) is clearly slower (1585 seconds) than for a

configuration of 4 slots and 4 workers (P16, 126 seconds) which amounts to a speedup

7Oracle Java JVisualVM: http://docs.oracle.com/javase/6/docs/technotes/tools/share/

jvisualvm.html

http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
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Figure 6.3: Average run times of the PageRank algorithm

of 12.57. This would be a super-scalar speedup, but this is only achieved due to the

restrictions stated before.

The experiments were run on a two node infrastructure cloud using a round-robin

virtual machine scheduler. This resulted in configurations where virtual machines were

bound to use Ethernet network communication and configurations where they could

communicate via virtual networking on the host machine. This results in an effect

visible in the runs for 1 slot and for 3 slots. The runs with 1 slot and 2 worker nodes

is surprisingly slightly slower than the run with 1 slot 1 worker (P1). This is because

in this configuration the virtual machines were always hosted on different physical

compute nodes. The same effect occurs for the runs with 3 slots where the run with 4

workers is performing slightly better than the run with 3 workers.

From the results it is also clear that running many slots on a single multi-core processor

is performing better than running a smaller number of slots distributed over many

workers. This becomes obvious when one compares the timings for the run of 1 slot on

1 worker (P1, 1585 seconds), 2 slots on 1 worker (P2, 640 seconds, speedup 2.47), and 4

slots on 1 worker (P4, 321 seconds, speedup 4.93). Slots are executed in the context of

the same JVM. Message passing between partitions that are hosted in the same JVM is

performed through local LinkedQueue implementations which removes the networking

overhead.

The results also show that there is in fact performance gain in running algorithms in

distributed mode on many compute nodes. For configurations of 2 slots per node the

single worker configuration runs in 640 seconds compared to a 3 worker configuration

which runs in 231 seconds which amounts to a speedup of 2.77. The situation is very

similar in the case of a 4 slot configuration where the single worker run takes 321

seconds and the 4 worker configuration finishes in 126 seconds; a speedup of 2.54.

The results show that for algorithms like PageRank that can be formalised in a fully

distributed manner good performance gains are possible when actually executed in a
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cloud environment. Applied on temporal graphs in a social network analysis scenario a

framework like DynamoGraph can provide a scalable foundation layer that make real

world datasets controllable.

6.4.2 Multiple Algorithms on IU Click Data

Since already at earlier stages of the project, it could be shown that shorter execution

times can be achieved by increasing the cluster size, a natural next move is to assess

behavior with significantly larger datasets. The hypothesis was that due to the struc-

ture of the processing framework DynamoGraph clusters can be horizontally scaled to

accommodate to dataset sizes. In general multiple large graph datasets for scientific re-

search can be found. Most of the popular graph datasets are organised in the Koblenz

Network Collection8 and the Stanford Large Network Dataset Collection9 [68]. The

latter with a clear focus on providing networks of significant size. The datasets found

in these two collections are large in the sense that naive algorithms will fail to compute

in feasible time. However, they mostly do not impose the restriction of making them

unmanageable on traditional computing systems.

A dataset of a dimension that makes processing on traditional single machines infeasible

is the Click Dataset from the Center for Complex Networks and Systems Research

(CNetS) at Indiana University Bloomington [74]. The dataset is a click stream which

is stored as in a proprietary binary format. It can be interpreted as a very large edge

list of web-pages referring to other sites. The raw and uncompressed edge-list amounts

for approximately 14TB, which is clearly larger than current commodity hardware

machines provide in random access memory. However, storage backends and network

attached storage systems can easily host data of that size. The dataset and the process

to obtain access is described in greater detail in appendix B.3.

As described earlier in general DynamoGraph clusters can be rolled out on top of

infrastructure clouds. Since the evaluation testbed again has some resource restrictions

the Click Dataset was preprocessed using a state of the art Hadoop cluster10. The goal

of the preprocessing was to condense the dataset to a size that allows DynamoGraph

to hold the complete model in memory on the given private cloud. It was important

that an in-memory processing approach can be used to eliminate possible effects from

bottle necks in data input / output of the underlying storage system. To achieve this a

Map-Reduce [23] job condensed the edge list, which was available at a time resolution

of milliseconds, to monthly resolution. Individual edges between vertices were reduced

to a single edge and the edge weight was the summed weights of the original edges.

8The Koblenz Network Collection: http://konect.uni-koblenz.de
9Standford Large Network Dataset Collection: https://snap.stanford.edu/data/

10Apache Hadoop: http://hadoop.apache.org

http://konect.uni-koblenz.de
https://snap.stanford.edu/data/
http://hadoop.apache.org
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Figure 6.4: Degree distributions for combined, in- and vertex out-degree

Further instead of individual URLs, that denoted vertices in the original graph, also

vertices were condensed to DNS domain names. Meaning that e.g. the URLs http:

//www.tk.jku.at/teaching and http://www.tk.jku.at/research were condensed

to a single vertex named tk.jku.at. This resulted in a 93 million edges DynamoGraph

CSV file that still can fit in memory on the hardware at disposal.

To simulate commodity hardware on the cloud stack a resource configuration typically

found in current desktop / laptop machines was used. The virtual machines were

equipped with 4 CPUs and 16 GB of memory. Additionally every machine was provided

with 40 GB of local storage and 16 GB of storage for swap. Then automated tests were

executed and the run-times for dataset import, and a mix of algorithms was recorded.

As a first observation we were able to record that for configurations of clusters with less

than 7 machines the runs fail altogether. Individual compute nodes run out of memory

and crash; the run can not complete.

In the range of available cloud resources many possible configurations were run. The

general limiting factors where physical memory and processors of the host machines.

Processors are abstracted by the cloud stack such that vast over-provisioning is possible

giving the impression only memory limits the size of computing infrastructure. The

used virtual machine configuration with 16 GB of memory allowed for up to 18 virtual

machines on the 288 GB of RAM provided by the infrastructure cloud. But it allows

to simulate 512 virtual CPUs with the hardware at disposal. As documented in the

results in this section the limitation of 48 physical CPUs in the system becomes visible

as a performance inhibitor. In first trials also other configurations with smaller virtual

machines were run. Performance in general decreased. The system required more

network communication overhead. Clearly vertex messages buffered in memory also

tapped into system memory which lead to memory consumption patterns that involved

high usage of swap memory. In extreme cases on very small machines (2GB memory)

runtimes of several days were expected. To make testing feasible 8 machines with 16

GB of memory formed the lower bound.

http://www.tk.jku.at/teaching
http://www.tk.jku.at/teaching
http://www.tk.jku.at/research
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Figure 6.5: Run-times for Click dataset import

In the automated tests cluster configurations built from 8, 10, 12, 14, 16, and 18

virtual machines were used. For each of these configurations the worker machines were

configured to run with 2, 4, 6, and 8 threads. Which in the smallest case provides 16

parallel processing threads as opposed to 144 threads. The latter case is clearly a vast

overbooking of the 48 physical processor cores installed in the test hardware.

For each run configuration above, three consecutive executions were performed and the

average time of the three runs is given in the results below. Each run was given two

tasks (1) the Click dataset was imported from an HTTP source on the cluster, and then

(2) PageRank was computed over the complete available timespan in a sliding window

of 6 month which was moved by one month per iteration. Task (1) is very input/output

intensive as up to 144 threads in parallel perform network and disk read operations on

a HTTP server and organize the retrieved data in memory structures. (2) in contrast

is CPU intensive and requires the system to repeatedly reorganize cached temporal

maps.

In the workload of the import task three extreme cases are interesting to observe (see

also the 3D plot in figure 6.5). The quickest import was achieved in 39 minutes 20

seconds (2360 seconds) on average with the 12 node 4 slots configuration. This is a

natural behaviour since in this configuration all 48 processors installed can be utilized.

On larger clusters import time decreases due to limitations in shared network band-

width. For instance the 16 node 6 slots configuration with 96 processors is 2 times

over-provisioning the provided hardware and gives the slowest average import perfor-

mance of 1 hour 13 minutes 45 seconds. One can see that as soon as more than 48

threads are concerned with the import task performance decreases. This is also the

case for scaling to smaller clusters not fully utilizing the available processors such that

the configuration of 8 nodes and 2 slots is the slowest, considering the system is not
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Figure 6.6: Run-times for Click PageRank runs

over-provisioned. In this configuration the import can be done in 1 hour 9 minutes 6

seconds on average.

However, more interesting is whether or not the same scaling effects can be observed

that have already been shown with the Enron dataset in section 6.4.1. Runs due to the

significantly larger dataset are of course incomparable with the experiments conducted

with the Enron dataset. In figure 6.6 a 3D plot of the PageRank runs over the Click

dataset are given. From this plot the expected behavior can be observed, adding more

compute resources to the problem results in faster execution times.

Again the speedup curve is initially very steep (see 8 virtual machines with 2 slots

compared to 8 VMs with 4 slots and 12 VMs with 2 slots). In the extremely small

case (8 VMs, 2 slots) an enormous number of vertices is handled on each partition. In

separate profiling runs the CPU and memory behavior for these selected configurations

was observed. We see that memory pressure during algorithm execution reaches the

limits of physical memory assigned to the VM such that the operating system is forced

to swap memory blocks to disk. The high memory utilization is triggered by vertex

to vertex messages that have to be queued on the receiving partition until superstep

execution advances by a step to process the queue. The diagram shows execution times

with the curve from 2 to 4 slots being slightly steeper compared to the case moving

from 8 to 10 VMs. This is clear since the larger slot configuration adds 16 threads to

the configuration where the larger cluster configuration only adds 2.

Also interesting to observe is that in this significantly larger dataset the resource lim-

itations of the underling hardware infrastructure is reached in certain cases such that

the scale-up in larger setups advance in plateaus. A first large plateau is reached in

multiple configurations (10 VMs 8 slots, 10 VMs 6 slots, 12 VMs 6 slots, 12 VMs 4 slots,

14 VMs 8-6-4 slots, etc.). An execution time of 4 hours 21 minutes on average marks a
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first resource boundary, the installation has only 48 processors which when monitored

in the hardware in these configurations are fully utilized during the local processing

phases of the superstep. Message queues for vertex to vertex messages do not fully fit

into memory but swapping operations can mostly be done in background. Only cache

misses in the graph data-structures that require the system to rebuild certain timespan

selections again and again are inhibiting factors.

These runs are then only outperformed by the configurations that are using almost all

the underlying cloud infrastructure stack’s resources. These are the configurations of

18 VMs running 6 slots and 12 VMs running 8 slots. They both complete PageRank on

average in 2 hours and 10 minutes. It is clear that in both cases all the 48 physical CPUs

available in the system must be fully utilized. Each of the processors is over-provisioned

by a factor 2 to 2.25. It seems that the workload is a good mix of processing and IO

tasks such that threads that stall for memory and IO can give way for other threads

waiting for the processor. Interesting to observe is that these two cases different overall

memory configurations. The 12 VMs configuration can utilize 192 GB of RAM and the

18 VMs configuration 288 GB (which is the maximum available amount of memory in

the installation). Interestingly the KVM hypervisor used in the OpenStack installation

is responsible for some of the observed effect. In the 12 VMs configuration very large

partitions still hit the 16 GB resource boundary forcing the VMs operating system to

swap. However, the KVM integration (guest and host) in the Linux kernel leads to a

situation where the host operating system is capable of completely caching the swapped

blocks in RAM such. Cache-miss operations in the guest VM have the impression that

memory blocks were retrieved from disk where they are actually read from memory.

This behavior is observable in the host machines which constantly reports filled disk

caches. In contrast the 18 VMs configuration runs completely without swapping any

of the DynamoGraph workload and is expected to perform well.

Interestingly technically larger configurations i.e. the maximum of 18 VMs running

8 slots each (144 threads using 288 GB or RAM) perform worse. In this case CPUs

are over-provisioned by a factor of 3 and memory is also slightly over limit. Since all

real memory is consumed by virtual machines the overheads such as the host-kernel

and VM management information, create a slight over-consumption, part of which is

compensated for by the host operating system with techniques of data-deduplication.

Nevertheless we see that swap space fills in this configuration thus disk IO causing

additional stalls in processing.
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Figure 6.7: Degree distribution of the Click dataset (cdegree) compared with the Enron
dataset (edegree)

6.4.3 Social Networks vs. Click Graphs

The two evaluation datasets presented in section 6.4.1 (Enron email database) and in

section 6.4.2 represent candidates of network data from two very different application

domains. The Enron email database is a case of a communication network which can be

categorized as a social network. It is formed through social interaction between mostly

human actors. In contrast the Click dataset is a web graph which is a technical network

or information network. From the mere metrics it is significant that the studied social

network is by magnitudes smaller compared to the web graph. However, this cannot

be seen as a general distinguishing criteria in general social networks can grow to very

large sizes it is only the case that datasets with dense temporal information are not

available to the general scientific audience.

In figure 6.7 the degree distribution charts (x-axis in log-scale) from the last sections are

repeated and put in context to each other. It is clear that the degree distribution follows

a steeper curve for the web graph compared to the social network. This means that in

comparison with the rest of the dataset only a small fraction of the vertices have very

high vertex degree and the vast majority of all vertices has insignificant vertex degree

for the web-graph. This is in contrast to the social network where the curve shows that

there are still a significant number of vertices with degrees between 20 and 50. If the

scales are observed it is also obvious that maximum vertex degree sizes are at round

2000 for the social network and in the millions for the web graph.
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The observed behavior is natural to the described graphs and the upper bound for vertex

degree can be explained in the social network due to effects known as Dunbar’s number

[26]. Dunbar claims that humans have a natural limit of social bonds they can engage

into which in his work is explained by the capabilities of the human neuro-cortex. But

the number itself can also be observed in other social networks as in that there seems

to be an upper bound on other actors with whom one is able to engage into meaningful

relationships [36, 87]. This is what also becomes visible in the Enron dataset, it is very

likely that the vertices with very high vertex degree serve as communication hubs and

thus do not have very tight relationships with all peers they are interfacing with.

Obviously this upper bound on link capacity does not hold for technical networks as

the web graph. Although it is safe to assume that a web-site with a very high in-degree

will face a great amount of web traffic and thus will have other resource requirements

compared to a web-site with low in-degree, there exist technical solutions to overcome

capacity bottlenecks.

But this effect of different vertex-degree distributions in these different classes of net-

work also has implications on the underlying processing architecture. In the vertex-

centric computing approach presented in this thesis a natural way of passing on results

is to spread local intermediate values to vertex neighbors. This mechanism has been

explained in very much detail in chapter 3 and is visible the example algorithms for

PageRank (see section 3.7.3) and the label propagation community detection (section

3.7.4). Vertices receiving messages from neighbors usually need to process them in a

loop. It is clear from the distributions given, that vertices with significantly larger

in-degree will require far longer for processing compared to the average vertex with

relatively low in-degree. Since the bulk-synchronous processing model requires to wait

until all vertices have completed computation it is a usual scenario that threads and

processors have to stall until these high degree vertices have completed.

It is clear that this stalling behavior is more distinctive in the case of the technical net-

works compared to the social network. In order tone down this effect counter-measures

in the algorithms can be introduced. For instance the PageRank implementation used

in the evaluation runs of this thesis requires the outgoing PageRank to overcome a cer-

tain configurable threshold before it is propagated to vertex neighbors. Extraordinary

small PageRank fractions (i.e. the PageRank portion webpages would get from links

in high volume search engines such as Google) will not contribute to make a certain

vertex distinguishable from other vertices. While formally this changes the algorithm

behavior, it is safe to assume that the introduced error is very small. Almost all vertices

in the web graph can be reached from a search engine.
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A general solution to this problem can be to introduce better partitioning of data in

the system. Future approaches (see section 7.1) will partition edges over the available

compute resources as opposed to vertices. Thus evenly distributing compute resources

along the cost driving dimension.

6.5 Discussion

During the various phases of evaluation certain interesting aspects can already be

formulated. Firstly, the case studies and other student projects which are based in

DynamoGraph have already shown that the overall engineering approach is feasible.

Considering that, for many other distributed computing approaches also significant

overhead in learning programming frameworks need to be taken, the Pregel-inspired,

vertex centric programming paradigm used in this thesis is feasible. In contrast to

more general distributed programming models the vertex centric model used in this

case serves a single purpose only. This makes DynamoGraph (barely) unusable for

other computing problems, but formalising algorithms in the context of a single ver-

tex completely hides erroneous parts of distributed computing (message passing, data

distribution, etc.) from programmers.

The software engineers working with DynamoGraph have most often been implementing

and testing their code in local developer mode with mock data. The most often re-

occurring error pattern are jobs without or with badly formulated halt conditions.

As already stated earlier this can lead to jobs running infinitely and in the current

implementation of DynamoGraph will block cluster resources. In some cases malicious

halt-conditions did hold on the mock data but broke on real datasets which results in

very strenuous debug cycles where worst case the log files of multiple worker nodes need

to be examined.

Clearly for production quality software the DynamoGraph framework will need further

improvements (central log repository, maximum runtime boundaries). However, these

can be considered as pure engineering tasks and are beyond the scope of this thesis.

Further evaluation of the prototype clearly shows that, given the still limited compute

resources of the available cloud stacks, clear speedups can be achieved by scaling the

compute system up vertically and horizontally. Unsurprisingly, vertical scaling has

greater impact as opposed to horizontal scaling which has higher cost of inter process

communication. In both cases it is clear that the speedup is so significant that a

distributed computing approach must always be considered when designing large-scale

(temporal) graph applications.
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It has also been shown that the approach scales very well to various dataset sizes.

Beginning from demo data, typically with below 100 vertices, over to the case studies

where around hundreds of vertices make up a graph, up to the large-scale datasets

processed during evaluation that range in the dimension of 600.000 email messages for

Enron or 53.5 billion HTTP request headers for the Click dataset, all of which can be

addressed with the same scalable temporal graph data processing approach.

With the reference implementation, its use in real world case studies and the final

evaluation, also the initial hypothesis that a novel software system can tackle real

world workloads for large-scale temporal graph processing are fulfilled. It has been

shown that:

Temporal Graph Partitioning along the temporal dimension, in what is called tempo-

ral resolution in this thesis, and structurally using traditional graph partitioning

methods serves the purpose well. The experimental datasets used in the studies

clearly follow the expected behavior that the growth in a graphs diameter is faster

than the growth in time dimension.

Distributed Temporal Graph Storage within this work was realized using temporal

maps. These can hold self contained copies of temporal-graph vertices. They

seem to be an optimal foundation for the vertex-centric processing approach used.

Distributed Temporal Graph Processing was designed around industry proven dis-

tributed computing concepts. It has been shown that the vertex-oriented Pregel

processing paradigm can as well be applied to temporal-graph structures.



Conclusions and Future Work 158

Chapter 7

Conclusions and Future Work

In the following future directions of the presented approach are discussed in detail and

a conclusion section provides a wrap up of the contributions made in this thesis.

7.1 Future Work

The distributed computing methods in context of temporal graph processing are a lively

topic of research in various disciplines right now. In providing a distributed comput-

ing approach to solve large scale problems in this area an important contribution was

made, which allows for shorter question, answer, reformulation cylces in real world sce-

narios. However, the presented approach comes at the cost to run extensive computing

infrastrucutre.

On the other hand many areas of the adressed area of research remain untouched by

this thesis or new questions arise from the current state of research. In the following

some prospective topics for future work are highlighted and briefly discussed.

7.1.1 Visualisation and Tooling

One key aspect that requires major improvement is the software stack itself. While

substantial effort was made to create a research prototoype mainly resource restrictions

hindered to push this prototype to production quality. Functionality obviously needed

in enterprise settings such as authentication and the configuration of access restrictions,

strategies for long-term data backup, and more straigth forward configuration are still

missing.
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Some of the code in DynamoGraph implements functionality already available else-

where as open source library. For instance the current trend for Big Data processing

and high-performance computing has given rise for complete software frameworks that

support tasks such as cluster management and intra cluster message passing. One such

prospective framework is JGroups1. It supports like organising multiple compute nodes

and their threads in clusters. Further it provides a transparent mechanism for intra-

cluster message passing which is implemented with plain network sockets in Dynamo-

Graph. JGroups proposes that their message passing implementation can transparently

integrate with enterprise message passing systems such as the Java Messaging System

(JMS). It is yet to be tested if the overhead a system like JGroups introduces has not-

icable performance impact on DynamoGraph. Vast amounts of network traffic can be

handeled in background such that minor throughput degradation will very likely not

have high impact on the system.

Further, the tooling for visualisation is still in alpha stadium. In DynamoGraph the

SigmaJS2 library is used for web-based graph drawing and Highcharts3 for arbitrary

other charts. First test with various other modern JavaScript UI libraries such as D3.js4

seem to be good candidates to base production ready visualisaton on. D3.js is widely

used in the data-analysis industry and would allow to draw graphs and other charts on

the same technological foundations.

7.1.2 Performance Improvements

In this thesis the general scalability of the approach is shown. With this it is clear that

with certain restrictions adding more computing resources to a compute cluster will

allow us to compute over larger input datasets or allows us to compute metrics for a

given input dataset in shorter time on a larger cluster. Fast execution is a key point.

The method presented here follows state of the art distributed programming models.

In recent related work it has been shown that there is still much room for improvement

performance wise. Mainly two strands of optimization are proposed: (1) instead of

the intuitive approach of applying edge-cuts when partitioning a graph vertex-cuts can

be used, and (2) for large parts of graph computations either structural information

or factual information of the vertices is used, that is either vertices and edges or their

attributes are in the focus of computation [37]. In (1) the results presented in this

thesis undermine the idea that vertex-cuts could improve performance in the sense that

a more homogenous dispersion of data over compute resources can be reached. Thus

1JGroups: http://jgroups.org/
2SignmaJS: http://sigmajs.org/
3Highcharts: http://highcharts.com/
4D3.js - Data Driven Documents: https://d3js.org

http://jgroups.org/
http://sigmajs.org/
http://highcharts.com/
https://d3js.org
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effects of stalling processors can be downscaled (see also the discussion in chapter 6,

section 6.4.2).

In the disucssed temporal graph models where a vertex is seen as a temporal document

or temporal map with the edges in the role of a vertex attribute, vertex-cuts are much

harder to achieve. Much of the attributes of a vertex will reside on multiple partitions in

the system and thus data manipulation operations will naturally become more difficult,

error-prone, and slower. A vertex is not a singular object but a complex document.

To overcome this and to also address the already mentioned improvement stand (2)

from above a decoupling of data attributes and graph strucural data can be done. This

would mean that for the graph itself pure time-stamped edge lists could serve as a very

simple data model. Whereas all the other information about vertices and edges can be

stored in (temporal) documents on state of the arte key-value storage engines. This

means that the attribute model is isolated from the network model and for each of the

two facets individual optimization strategies can be used.

For the edges it is clear, vertex-cuts and thus evenly distributing edges over compute

resources can provide a performance improvement. For attributes well known document

retrieval strategies with multilayered caches can be implemented. In the DynamoGraph

project both changes would require substantial changes in the data and processing

architecture such that these improvements need to be moved to later iterations of the

project.

7.1.3 Dynamic Notion of Time

A final improvement that can be made to the presented approach is adressing the notion

of time in use. Currently data is structured in the time dimension in what is called

the temporal resolution. This means that data in vertices is grouped in time-frames of

fixed size in a certain time unit. For instance if data is represented in hourly resolution

then time-frames of the length of one houre are the smallest unit for data processing.

DynamoGraph in its implementation already allows time-framed queries such that data

from multiple such fixed width blocks can be combined. A developer can run algorithms

in arbitrarily long time-windows of a datasets resolution.

However, when observing real world datasets it becomes clear that information is rep-

resented in variying granularity over time. For instance networks derived from business

e-mail databases will show higher event density during work hours but less density
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during night and on weekends. Thus it would be preferable to allow for dynamicitiy in

specifiying time frames for data storage and processing.

In DynamoGraph the concept of a timeframe is interwoven with many concepts of the

underlying data structure, the temporal map. In general the storage frameworks re-

quires all notions of time to be aligned along time resolutions. This allows for the system

to simply compute fitting timeframes from points in time over comparing a point in

time with multiple timeframe candidates, which is a search task. Implementing lookup

mechanims in the storage backend that divert from the static resolution based model

would require substantial adaption and thus retesting of basic project infrastructure.

7.1.4 Incremental Computation

Related work on dynamic graph alorithms [29] also shows that the temporal graph

opens new interesting strands for research. In DynamoGraph (see also section 6.4.2 in

chapter 6) a typical use case is to compute a certain metric over a sliding window. This

allows to reason over the development of certain metrics over time. The downside of

this approach is that large computational overhead is taken to recompute values and

intermediate values which were already available when processing data in predeceding

time windows. This is especially the case for networks where the degree of change can

be predicted as particularly low (i.e. road networks, global telephone network).

It would be interesting to research as to whether it is possible for certain of these

algorithms to derive the result of a timeframe Tn from the already computed results

of a predeceding timeframe Tn−1. The assumption would be that for many algorithms

this is in fact possible and could substantially reduce the computational overhead.

Further, for algorithms where the above stated hypothesis will not hold it could still be

interesting if results from previous timeframes can be used as the seed for consecutive

algorithm runs. For instance algorithms such as PageRank initialize all vertices with

a predifined constant initial rank. It is yet to be confirmed if such metrics can be

computed in faster time in sufficient accuracy by using past PageRank values as the

initial values for recomputation.

7.2 Concluding Remarks

The presented work documents the results of research in the area of large-scale temporal

graphs. It was motivated that the formal construct of a graph which retains time
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information as it changes has practical relevance and thus applied research in this topic

is valuable. Further, it was highlighted that the most interesting problems that can be

modelled as temporal graphs usually are very large-scale problems ultimately making

compute models and their concrete implementations a necessity to advance research in

this area.

In this work then preliminaries in the field of graphs and temporal graphs in particular

were given to illustrate which formal models and important algorithms for them exist.

Prospecitve application areas were discussed and from these possible requirements for a

novel temporal graph processing system were derived. The hypothesis was made that by

finding suitable distributed data structures, and providing simple query and processing

mechanisms for application developers will allow to build a temporal graph processing

system that can serve as the foundation for future resarch but also applications on real

world networked problems.

From a literature review in relevant areas it was concluded that none of the existing

approaches are suitable for the exact requirements derived in this thesis. But it was also

clear that certain aspects of this work can be rooted in existing paradigms such as the

Pregel graph processing approach [73] and with this a vertex-centric data distribution

method.

An extensive research prototype, called DynamoGraph, was implemented. It fulfills

many of the posed requirements and demonstrates that the proposed solution, of us-

ing distributed temporal maps with temporal selecting mechansims in interplay with

adapted and extended verions of Pregel, is a technically viable approach. On top of Dy-

namoGraph several case-studies and a performance evaluation was conducted to prove

the point that the framework is usable in real-world scenarios. It was shown that the

datastructures in use, the algorithm formalisation method and job execution are con-

structed in a way that allows third-party application programmers to base their systems

on DynamoGraph and it was further shown that the distributed computing approach

is scalable and flexible enough that vertical and horizontal scale-up scenarios can be

used to improve application performance or to address larger problems. These results

are underpinned by experimental performance evaluations.

With this it is clear that temporal large-scale graphs are a class of data that occur

in various applications and thus has a high practical relevance. With frameworks like

DynamoGraph they become manageable and thus they can be used in real world ap-

plication scenarios. Still the research field provides large potential such as more in-

telligent partitioning schemes (vertex- over edge-splits) and the use of dynamic graph

algorithms.
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Appendix A

Tooling

The real world implementation of this thesis available as open source software.

The code, detailed instructions, and code samples can be found at http://www.

dynamograph.net/. The following chapter gives a brief overview of the tools in use,

lists their versions, and purpose they were used for.

A.1 Java, JavaScript, Web

As highlighted in chapter 4 the prototype implementation was mainly implemented with

the Java programming language. There are basically two components worth mentioning

in this respect. The first component is the computing cluster which is implemented as a

standalone distributed Java application that can be deployed to possibly many worker

nodes in a computer cluster. The second component is the web based user interface

which is implemented as a Java Enterprise web application that runs in a Servlet

container. The the following paragraphs and sections describe the tools and versions

used in these components.

For software project management in general and automated dependency management

the infamous Apache Maven 3.1.1 toolset is used. All components of the prototype are

available as a Maven configured artifacts and can be automatically built and tested on

state-of-the-art software integration services such as Jenkins http://jenkins-ci.org.

Although continuous integration is currently performed from the developers machines

since the project team was rather small and most of the time consisted only of the

thesis author.

Although Java 8 was already available at the time of writing this the prototype was

still compiled and tested with Java 1.7.0 45-b18 since first tests with Java 8 VMs have

shown that some minor changes in object serialization could cause problems with the

http://www.dynamograph.net/
http://www.dynamograph.net/
http://jenkins-ci.org
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distributed compute cluster and the new features available in Java 8 were not used by

the project anyway.

The following list shows all Maven projects in alphabetical order and their purpose is

briefly explained.

analytics: The analytics project is a helper project that contains Java and R code for

general statistical analysis of datasets and is not available on production instal-

lations of the system.

census: This contains lists of firstname and lastname, and their frequency of occurance

in the 1990 USA census [117]. The project contains a library that can be used

to assign unique firstname, lastname pairs to vertices which is used to assign

random names to make anonymized datasets. This process has proven to make

anonymized datasets better readable.

commandline: This project contains command-line utilities that allow some control

over a running temporal graph processing cluster. Mainly it can be used to

properly shut down a cluster and to perform other maintenance tasks.

common: This project contains general data-structures to describe a temporal graph

such as vertices and edges and also contains more general data-structures such

as the implementation of a temporal map which is the basic foundation of most

data components in the system.

configuration: As the name suggests this project is just a helper that allows to read

configuration files from disk and provides the loaded configuration as static vari-

ables to the many other components of the system.

datasources: This project provides libraries that enable access to diverse data-sources

such as static data-sets that hold temporal edge lists, relational databases, e-mail

database parsers, and dynamic data-sources such as directly streaming data from

Twitter.

distributed: This resembles the core of the distributed compute cluster and holds the

code for all components such as the master node, the worker node, election pro-

cess, graph partition table, and all the communication and multi-threading code.

Implementation details of this project are described in greater detail in A.1.1.
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dynamo-graph: This is an almost empty Maven parent project. It just holds a Maven

project object model that can be used to build, test, and deploy all system com-

ponents in one coherent build process.

frontend: Here the web based user interface is implemented. The project can be built

to a standard Java EE web application contained in a WAR file and deployable

to any standard compliant Servlet container as explained in more detail in A.1.3.

opencv: This project contains code that allows to reconstruct past social networks

from image data. Such that user provided picture libraries can be imported and

a temporal social network is extracted from them.

playground: The playground project is a potpourri of different code snippets that were

used for testing. To the interested reader this project might be interesting because

it shows how code can be run on top of the distributed computing framework.

Especially interesting might be the parts that allow developers to run the system

in so called local developer mode to debug distributed algorithms.

staticdata: This is a project that contains static data-sets used during testing and

evaluating this thesis. The data-sets are mostly compiled from temporal edge

lists. Each data-set available to the system also contains a configuration file that

can be parsed by the frontend application and contains information like a data-set

description, the color coding used and the edge types contained in the data-set.

uml: This project contains ObjectAid 1.1.6 UML class diagrams that are automatically

synced with the code in the other projects. The UML diagrams are used for

documentation purposes in this thesis and on the project website.

utils: Finally the utils project contains general purpose utilities that did not fit with

any other project but are used throughout many components of the project. Such

utilities are a extended version of an URL resolver, parser for files encoded as

comma separated values, and a tool that is capable of merging colors available as

RGB color codes.

A.1.1 Distributed Java Applications

As already explained in great detail the distributed graph computing framework is im-

plemented as a standalone Java application. However, projects of such high complexity

are not possible without high quality frameworks that support certain aspects of the
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systems requirement. In the case of DynamoGraph the following open source projects

deserve to be mentioned.

Apache ZooKeeper is an open source configuration database that supports resilient,

distributed configuration. It is a system which can be used to implement distributed

synchronisation mechanisms. The project is particular useful since many of the best

practices in distributed computing are very well documented in recipes1. This takes

much of the complexity involved in creating a distributed system away from a software

developer and moves responsibilities such as synchronisation and locking into a library

which is very well tested and industry proven.

Other complex tasks are also widely based on ZooKeeper recipes in other systems such

as Apache Spark and Apache Hadoop. For instance the leader election implemented

for a failsafe DynamoGraph cluster are strictly implemented after the provided guide-

lines.

Gson, Jackson, FST serialisation libraries are used extensively to free software devel-

opers from implementing network protocols. In general DynamoGraph uses a binary

protocols between its compute nodes. These binary protocols are implemented with

Java object serialisation mechanisms. The mechanisms provided with the Java API

are known to be rather slow such that the FST Library2 was implemented. The gen-

erated serialized objects are binary compatible with Java API serialisation. However,

certain circumstances (e.g. single messages exceeding 100MB) might require that users

configure DynamoGraph to use standard serialisation.

For debugging purposes it was sometimes necessary to being able for humans to inter-

pret the data on network channels. This can be achieved by enabling JSON serialisation

instead of binary protocols. Depending on the JSON library available on the classpath

either the Jackson3 or the Gson4 library can be used.

A.1.2 Client API Methods

This section gives a brief overview of the available functions in the DynamoGraph client

API as provided by the master node. The methods are roughly categorized by tasks.

Namespace Management: With these commands namespaces can be managed.

1ZooKeeper Recipes: https://zookeeper.apache.org/doc/trunk/recipes.html
2Fast Serialisation (FST): https://ruedigermoeller.github.io/fast-serialization/
3FasterXML Jackson JSON library: https://github.com/FasterXML/jackson
4Google Gson library: https://github.com/google/gson

https://zookeeper.apache.org/doc/trunk/recipes.html
https://ruedigermoeller.github.io/fast-serialization/
https://github.com/FasterXML/jackson
https://github.com/google/gson
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List<Vertex> listModels()

boolean containsModel(String namespace)

The methods listModels and containsModel can be used to reason about the cur-

rently instantiated namespaces in a cluster.

void createModel(String namespace, Resolution res)

void deleteModel(String namespace)

These methods can be used to manipulate the list of models configured at a cluster.

Needless to state that any data not saved somewhere else is lost upon namespace

deletion. For the model creation a resolution needs to be specified. All points in time

and timespans in the model will automatically resolved to this resolution.

Timeframe getMaximumTimeframe(String namespace)

ModelDescriptor getModelDescriptor(String namespace)

The functions getMaximumTimeframe and getModelDescriptor can be used to retrieve

detailed information about DynamoGraph namespaces. The maximum timeframe func-

tion can be used to determine the start and end time of all the data stored in a names-

pace. A model description contains information about a models resolution, its name

and a description.

Graph Manipulation Instructions: Are all commands that allow the software

developer to create, update and delete individual components of the graph. Technically

speaking manipulating graph elements in a namespace.

void addNode(String namespace,Vertex vertex)

With this method the application developer can prepare a Vertex object in her program

and load it into a namespace. The method trows an error if the vertex (according to

vertex id) already exists in the namespace.

void deleteVertex(String namespace, long vertexId)

void deleteVertex(String namespace, Vertex vertex)

This method can be used to delete a vertex. It is possible to either pass the vertex id

or a Vertex object as a parameter.

void addEdge(String namespace, Edge edge, long time)
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An Edge object is in general a timestamped edge with two fields for the source and

target id for the connected vertices. By calling this method the edge is automatically

inserted in the in-edge and out-edge collections of the affected vertices.

Vertex getVertex(String namespace, long vertexId)

Vertex getVertex(String namespace, long vertexId, Timeframe tf)

With this method developers can retrieve a Vertex object from the cluster, given its

vertex id. Optionally a timeframe can be specified thus requiring that the vertex exists

(has attributes) in the denoted timeframe.

void updateVertex(String namespace, Vertex updatedVertex)

With this method a vertex and all its attributes can be updated. It is good practice

to retrieve a copy of the vertex from the cluster prior updating. The udpateVertex

method assumes that the vertex exists and overwrites it without further sanity checks.

long findMaxVertexId(String namespace)

Calling this will return a long denoting the largest vertex id found in the given names-

pace. This can be used to determine a valid, unused vertex id for new vertices that are

about to be added to a namespace.

Vertex findVertex(String namespace, String vertexName)

Vertex findVertex(String namespace, String vertexName, Timeframe tf)

These two functions can be used to find a vertex by their name attribute. Technically

no direct lookup table for names exists such that a graph query (queryVertices) is

built on the master and its result is returned. See details in the next block.

Superstep Algorithm Execution: This contains a set of methods that can be used

to schedule algorithm execution, allows to query current status of algorithm execution,

and helps in managing custom user code on the cluster.

long executeAlgorithm(String namespace, String clasz)

long executeAlgorithm(String namespace, String clasz,

SuperStepContext context)

long executeAlgorithm(String namespace, String clasz,

SuperStepContext context, Timeframe tf)
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The executeAlgorithm method instructs the compute cluster to execute the Superstep

denoted by the clasz parameter over the specified namespace. Optionally a Super-

StepContext can be provided which might contain configuration values for the algo-

rithm. Further an optional timeframe can restrict as in which timeframe the algorithm

is to be executed. The return value of these calls is a long denoting the superstep profile

id. This id is used to query details about algorithms with the methods described in the

following.

SuperstepExecutionProfile getExecutionProfile(long profileId)

A SuperStepExecutionProfile describes an instance of a Superstep in great detail.

It is used by the master node to track execution status and consequently can be used

by application developers to infer current execution status. The most important field

in this object is the status field of type ExecutionProfileState, it denotes the cur-

rent overall state of the Superstep (New, Executing, Waiting, Completed, and Failed).

But the profile contains much more information such as the number of current active

vertices, the number of already executed phases and steps, timing information, the

number of pending vertex-to-vertex messages, and the last copy of the global algorithm

memory. Some of the attributes can be queried with the shorthand methods in the

following.

ExecutionProfileState waitForAlgorithmState(long profileId,

ExecutionProfileState... states)

ExecutionProfileState waitForCompletion(long profileId)

With waitForAlgorithmState an application developer can make a client application

stall until the superstep on the master reaches a certain state. This way a client ap-

plication can submit a job, then perhaps makes some further instructions as to track

meta-information about the job. And then wait for the superstep to switch into Com-

pleted or Failed state. The method waitForCompletion is a shorthand for this behavior

it stalls until the algorithm completes or fails.

SuperStepContext queryAlgorithmContext(long profileId)

This is a shorthand to query only the global memory from a profile.

ExecutionProfileState queryAlgorithmState(long profileId)

This to query only the profile state.

Exception queryExceptions(long profileId)
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And this can be used to retrieve exceptions that caused an algorithm run to fail. The

method will return null on all profiles that are not in Failed state.

List<Vertex> queryVertices(String namespace, GraphQuery query)

Graph queries are special forms of supersteps that can return a list of vertices as their

result. They are used to retrieve more complex queries back from a DynamoGraph

cluster. For instance a vertex and its neighbours or vertices with certain attributes.

void loadCode(String clasz, byte[] binaryJar)

void unloadCode(String clasz)

The loadCode and unloadCode instructions can be used to allow software developers to

upload their custom superstep implementations to a cluster. The parameter clasz is

used to identify the main class of the superstep and is also used to identify the uploaded

code package. The code itself must be encoded as a standard Java JAR file. The content

of this JAR file must be supplied in the byte[] which is the second parameter to the

function.

Bulk Data Import: This group of instructions allows a software developer to bulk

import data from datasources which support remote import.

long startRemoteImport(ConfiguredModelProvider provider,

String namespace)

RemoteImportProgressStatus queryImportProgress(long importJobId)

The method startRemoteImport launches an import stop using the configured model

provider which basically describes the datasource to be used. The import target is the

already existing namespaces denoted with the second parameter. The method returns

a job id which can be used with the method queryImportProgress to query the cluster

on the progress of the import. It returns a complex object which holds many details

about the import such as the number of already imported vertices opposed to the

expected number of elements still in the queue.

Cluster Status and Monitoring:

ClusterInfo getClusterInfo()

Cluster info can be queried from a DynamoGraph master to reason about the current

system status. The cluster info contains information about the number of active work-
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ers, number of active partitions, and whether or not the cluster is currently active and

ready to process commands.

Sample benchMarking()

With the benchmarking function more detailed information about the cluster can be

retrieved. However, depending on configuration it might be the case that no bench-

marking metrics are recorded. A benchmarking sample holds the latest system metrics

for the master and worker nodes. This can be basic hardware specific information such

as the current CPU load and memory pressure but in the case of a master sample also

contains information about the currently executing supersteps.

A.1.3 Web-based User Interface

As explained in 5 users working with a system like the presented will most likely prefer

to use web-based user interfaces. The high volume of data do be processed is just

one argument for web-based access which practically allows the user to have the data

completely stored in the cloud and just interface the processing from a web-browser.

In the case of this project state-of-the-art web technology was used to build the user

interface. The application is built as Java web application compliant with version

3.0 of the Servlet, version 2.2 of the JSP (Java Server Pages), and 2.2 of the EL

(Expression Language) specifications. The visual rendering of the web pages is based

on the JSF (Java Server Faces) 2.1.7 implementation provided by PrimeFaces 3.3.1

which guarantees that the user interface also complies with current standards for cross

platform web-design.

For graph visualization the frontend relies on the JavaScript based graph drawing li-

brary SigmaJS 0.1 which was extended by a few simple modules which allow the user

to move vertices in the graph via drag and drop, enable context information for each

vertex such that computed scores for each vertex can be displayed, and the users are

able to directly interact with vertices to drill deeper in a graph when necessary.

In general the web-based user interface can be built via Maven by running a build in the

frontend project. The result is a web application archive (WAR) that can be deployed

on any arbitrary Servlet 3.0 container. During the implementation and testing of this

thesis mainly Apache Tomcat 7.0.29 and earlier was used and thus Apache Tomcat is

highly recommend for production environments also.

Other open source frameworks used to implement the web frontend of DynamoGraph

are jQuery and Highcharts.js mainly to reder chart data.
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A.2 Cloud Stacks

DynamoGraph is designed to run on cloud stacks. This is for two reasons, firstly,

cloud computing is the current paradigm for harnessing infrastructure resources. To

allow DynamoGraph to integrate well with state of the art software stacks it was a

natural choice to also base it on the same stack. Secondly, it was shown that the

processing architecture scales well which means that in real world application scenarios

large software clusters need to be run. It is a cumbersome task to setup and maintain

a large number of computers with the same software stack such that the mechanisms

provided by infrastructure cloud stacks is very helpful.

In early stages of the project an OpenNebula5 cloud stack was used as the foundational

layer. This stack was later dismissed due to other workloads using the same stack

required changes in the network topology. Evaluation of several stacks have shown

that the OpenStack6 provides enough flexibility to host several projects on the same

infrastructure while providing extensive network isolation. Further OpenStack provides

wide compatibility to public cloud stacks such as the Amazon AWS system and provides

integration for state of the art infrastructure provisioning systems such as Chef7 and

Puppet 8.

For convenience reasons, mainly because the OpenStack cloud stack itself was already

provisioned and configured using Puppet also the DynamoGraph nodes are provisioned

with a Puppet manifest. All the experiments conducted were run on top of the Open-

Stack release 2014.2.2 codename Juno. The Puppet infrastructure runs off of version

3.8.1.

5OpenNebula: http://opennebula.org
6OpenStack: https://www.openstack.org
7Chef: https://www.chef.io/chef/
8Puppet: https://puppet.com

http://opennebula.org
https://www.openstack.org
https://www.chef.io/chef/
https://puppet.com
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Appendix B

Used Datasets

Whilst developing, testing, and evaluating this thesis many different datasets from dif-

ferent sources were used. In this section all the datasets used are listed, their licensing,

source, and usage is explained in greater detail. The datasets are generally divided

in artificial and natural datasets that were collected from real world observations. Al-

gorithms usable to generate artificial datasets are briefly described in 6.2.2 and were

seldom used.

For the real world datasets two important factors were considered (1) data should be

generated by humans or some natural process, such that the data is a model of a real

world network, and (2) the dataset needs to be of significant size to demonstrate that

horizontal scalability can be used to scale to large data sizes.

In the following three datasets and their source are discussed in greater detail to allow

the interested reader to obtain the same data for related research.

B.1 MIT Reality Commons

The MIT Human Dynamics Lab has a long history in researching human signals. It is

a very active group around Alex (Sandy) Pentland, the author of Honest Signals [90].

In their efforts of analyzing many aspects of human behavior they also created several

data sets.

These datasets are of different age and depending on the technological advancements

in mobile computing the collection methods varied over time. At the beginning so

called sociometric badges were used to capture user interaction. These badges are

wearable electronic devices that are capable of measuring face-to-face interaction be-

tween humans. They record each others infrared signals in order to detect face-to-face
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interaction and audio features in order to detect activity in these interactions. Later

feature phones and smart phones were used in the sensing process, completely replacing

the sociometric badges. The effort of collecting data on mobile phones eventually re-

sulted in the funf framework [2], which is a highly configurable platform for measuring

all sorts of sensor data of a mobile phone.

All datasets that are available in the Reality Commons contain a variety of different

sensor readings and also related information like performance indicators or music genre

preferences. In this work we mainly focus on information that we can use to reconstruct

a dynamic social network of the sensed communities. The individual datasets are

described in the following mainly focusing on how they can be used to construct a

social network.

The first dataset labeled Reality Mining [27] was created in 2004 and contains Bluetooth

proximity, phone call logs and text message logs collected from Symbian based mobile

phones. This dataset contains sensor readings from 100 subjects that participated in

the study for at least a year. Obviously the data can be used to construct a social

network that shows the three different dimensions of interaction: face-to-face, phone

calls and text messages.

Later the Badge [88] dataset was collected. It was created using the sociometric badges

described earlier. These badges were developed since the mobile phones were proven to

be not feasible in a workspace environment where users did not carry their phones on

them at all times. So in this study sociometric badges were worn in the workspace in

order to detect face-to-face interaction and certain other data about the users. The big

advantage of this dataset is the fact that also individual work performance data was

collected. Performance was measured by a ticketing system that was used to handle

inbound customer requests. This way it is possible to predict which social patterns lead

to high work performance.

In 2010 a large study on Friends and Family [3] was conducted. Approximately 64

families and 130 individual participants were taking part. This dataset was also col-

lected on mobile phones and contains data about face-to-face interaction derived from

bluetooth proximity, voice calls and text messages which allow to construct a dynamic

social network. Further this dataset contains ground truth about couples, closeness

between individuals and certain other facts about private life that can be used to to

check results.

And finally the last dataset available in the Reality Commons collection is the Social

Evolution Dataset [72] collected in the years 2008 and 2009. It contains data from

everyday life of a whole undergraduate dormitory. With the collection of this dataset
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the diffusion of information, opinions and illnesses was measured. This dataset was also

recorded with mobile phones but contains large samples of opinions, symptoms, and

preferences that were collected by repeated online surveys during the study.

All files of the MIT Reality Commons are available as edge list files. These are comma

separated value (CSV) files with a common structure. The first column usually denotes

the unique source id of a person, the second column the target id, followed by a column

for the edge weight (if any) and a date or timestamp. The DynamoGraph platform

supports direct import of CSV files through the dataset import mechanisms described

in section 5.5. The datasets described above are relatively small the largest (Friends

and Family) amounts for 300MB in total.

B.2 Enron e-Mail database

In October 2001 in the US a big scandal around tax fraud and stock market manipula-

tion involving the Enron Corporation was uncovered which eventually led to bankruptcy

of the enterprise [10]. During the investigations and the aftermath of this case large

amounts of Enron’s e-mail communication was acquired by the Federal Energy Regu-

latory Commission. This data set further on called the Enron e-Mail corpus was then

sold to Andrew McCallum at the University of Massachusetts Amherst who made his

copy generally available to research [20]. This is why this e-mail corpus is widely used

in studies for social network analysis and natural language processing.

This corpus is unique in that respect that it is the only available corpus which contains

a very large number of real e-mails for a very long time period. The oldest messages

in the corpus date back to 2001 and the newest one were sent in 2004. The original

data set that was released by the University of Massachusetts contained approximately

600.000 messages. The original data source however was revised in 2010 by Electronic

Discovery Reference Model LCC (EDRM)1 and manual data cleansing was applied such

that in the EDRM dataset [57, 20] 1.7 million messages can be found. In the EDRM

corpus the data cleansing process was far more precise such that only around 10.000

items had to deleted. Mainly messages which contained sensitive information such as

credit card numbers, social security numbers, national identity numbers and passport

numbers, individuals dates of birth, and information of highly personal nature such as

medical and legal matters. The cleansed EDRM dataset is of 1.43 size and is mainly

interesting because it contains real human-to-human interaction.

1Electronic Discovery Reference Model LCC: http://edrm.net/

http://edrm.net/
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In the EDRM download all emails are available as maildir mailboxes in plain MBox

format. Which means all e-mail contents with the complete header information and

the e-mail body are stored in individual files. As for DynamoGraph only the social

network inherent in the dataset were of research interest a converter application was

created. The converter is able to ingest the e-mail database. During this process e-

mail addresses found in the database are cleansed and filtered. Then vertex id’s are

assigned to each e-mail and for each occurrence of an e-mail sender sending a message

to a recipient an edge is created. The generated date is stored to CSV files which can

be directly imported to the DynamoGraph platform through the available importers

(see section 5.5.

B.3 Click Dataset

Available through the Center for Complex Networks and Systems Research (CNetS) at

Indiana University Bloomington the Click Dataset is currently the largest web traffic

network available for research. The data was collected as part of research conducted

by Weiss et al. [74]. The datasets contains 53.5 billion HTTP requests of HTTP traffic

from and to Indiana University. The HTTP header information is stripped down to

the bare minimum information necessary to reconstruct a web graph. It contains the

requested URL, the referring URL, and two boolean flags. One indicates whether or

not traffic was user or bot generated, and the other denotes the origin of the request

(inside or outside of Indiana University).

Data was collected on a packet filter on an edge-router of the university and contains

data from September 2006 to May 2010 with 275 days missing. The data is broken

down into hourly files and files for any individual day are compressed using tape archive

(TAR) and GZip compression. The data files themselves are in a custom line based

format which mixes binary and text formats. The first line contains the timestamp and

flags in binary format followed by the referrer URL. Line two and three contain the

host-name and the path of the request URL.

The dataset can be obtained from CNETS under licensing and disclosure conditions

found on their website2. Technically the data is made available in encrypted and

compressed format on a single 3TB hard drive. Uncompressed the data amounts for

more than 14TB of data.

In order to import the data to our DynamoGraph test-cluster available at the Institute

of Telecooperation significant preprocessing of the data was required. The data was

2CNETS Click Dataset: http://cnets.indiana.edu/groups/nan/webtraffic/click-dataset/

http://cnets.indiana.edu/groups/nan/webtraffic/click-dataset/
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decrypted and decompressed on the fly, individual request lines were filtered and the

domain names of request and referrer were extracted. This data was then stored as edge

lists in CSV files which again can be easily imported to the DynamoGraph platform.
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http://snap.stanford.edu/data


Bibliography 185

[79] C. Moler. Matrix Computation on Distributed Memory Multiprocessors. Hyper-

cube Multiprocessors, 86:181–195, 1986.

[80] J. Mondal and A. Deshpande. Managing Large Dynamic Graphs Efficiently. In

ACM SIGMOD International Conference on Management of Data, 2012.

[81] J. L. Moreno. Who Shall Survive. Beacon House Inc., 1934.

[82] P. Mucha, T. Richardson, K. Macom, M. Porter, and J.-P. Onnela. Commu-

nity Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science,

328(5980):876–878, May 2010.

[83] J.-B. Musso. Network Management and Impact Analysis with Neo4j. https:

//linkurio.us/network-management-and-impact-analysis-with-neo4j/,

April 2014.

[84] NetworkX. NetworkX: Graph Generators. https://networkx.github.io/

documentation/latest/reference/generators.html.

[85] M. Newman and M. Girvan. Finding and Evaluating Community Structure in

Networks. Physical Review E, 69(2):026113, February 2004.

[86] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. Graph

Metrics for Temporal Networks. In Temporal Networks, pages 1–27. Springer,

January 2014.

[87] Don’t Believe Facebook; You Only Have 150

Friends. http://www.npr.org/2011/06/04/136723316/

dont-believe-facebook-you-only-have-150-friends.
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