
Platform for General-Purpose Distributed
Data-Mining on Large Dynamic Graphs

Matthias Steinbauer
Johannes Kepler University Linz
Department of Telecooperation

Linz, Austria
Email: matthias.steinbauer@jku.at

Gabriele Kotsis
Johannes Kepler University Linz
Department of Telecooperation

Linz, Austria
Email: gabriele.kotsis@jku.at

Abstract—We present an approach to data mining on arbitrary
graph data that uses a cloud-based distributed computing model
for dynamic provisioning of computing resources as the graph
model grows or shrinks. Further, we introduce the concept of
logging graph changes as a basis for calculating properties of
dynamic graphs. We briefly describe queries that leverage the
dynamic graph model, for instance, by using a snapshot of the
original graph while an algorithm executes or adapting query
results as the graph changes. To demonstrate the feasibility of
our approach, we conducted an initial evaluation, which shows
that our parallel computing model can dramatically improve load
times. Raw data imported into our system is processed faster on
larger compute clusters.

I. INTRODUCTION

Graphs and networks have a long-standing history as mod-
els of real-world problems. They have been applied in the
context of communication networks (Internet, wireless, ad-
hoc and sensor networks), social sciences (social networks),
and biology. For instance, proteins [1], social networks, and
connections on the Internet can be modeled as graphs. Re-
search has so far concentrated mainly on static properties of
graphs. However, the real-world reference of a graph model
is often dynamic, which means that it changes over time in
many aspects. This creates a demand for graph and network
systems that reflect these changes in their models.

Real-world applications of graphs are not only dynamic,
they often require very large models. For example, at the time
of writing 1, the Facebook graph consisted of more than 1
billion active users [2], which clearly makes this a big data
[3] problem.

The state of the art in computer science uses graph databases
as the main storage and model for graphs. They usually support
extensive query interfaces for querying and altering the graph.
Since these graph databases have emerged from a long history
of static graph processing, their query interfaces focus strongly
on static graph properties. Dynamic graph properties such as
the speed of growth of a sub-graph or the whole graph cannot
be determined.

Another problem with dynamic graphs in static storage
systems is that of graph changes during the execution of
algorithms and queries. This can lead to unexpected results, for

1Data was retrieved in April 2013

instance, if an edge or a vertex still needed for the execution
of the algorithm is deleted from the graph.

Current implementations of graph databases tackle these
problems with transactions and locking mechanisms ranging
from ACID2 to eventual consistency. Stricter locking could
delay the execution of other queries or algorithms in other
transactions.

In this paper, we propose novel ways of managing, querying,
and computing on large dynamic graphs. We argue that by
keeping track of the complete history of a graph, we can
solve some of the problems described: (1) By storing the
complete history of a graph model, we are able to compute
dynamic properties of a graph. (2) Algorithms can be executed
to completion on a snapshot of graph model. In effect a static
view is created for the lifetime of each individual query or
algorithm.

Our architecture is designed to leverage cloud computing
resources as the graph and its version history grow larger.
The graph model is distributed over several compute nodes
of a cloud. Query and update mechanisms use the very same
distributed architecture. This results in a platform that allows
distributed data mining on large dynamic graphs.

We briefly present a basic implementation based on the
distributed real-time computation system Storm [4], which
provides mechanisms for reliable distributed computation;
these are used to store a distributed model of a graph and
to perform computations on that model.

Our prototype implementation allows the user to load large
dynamic graphs and run simple queries. The framework en-
sures either (1) that the query is run on a static view of the
graph or (2) that the query result is updated as the dynamic
model of the graph changes.

We are currently experimenting with applications in the area
of Reality Mining (RM) [5], more specifically, with gathering
and analyzing data about human behavior and interaction in
the real world. In the context of communication traces, RM
allows a model of the communication network of individuals
to be generated. We have previously shown that such models
of communication networks provide interesting insight into
groups [6].

2Atomicity, Consistency, Isolation, Durability



The remainder of this paper is structured as follows: In
section II, we briefly describe work from relevant fields.
Section III defines some terms that may be ambiguous in the
context of this paper. In section IV, we explain our current
prototype implementation. An evaluation and future work are
presented in section V, and section VI concludes the paper.

II. RELATED WORK

There are several fields that relate to this work, most
importantly distributed graph databases and distributed graph
processing engines.

A popular example of a graph database is the Neo4j [7]
system. It also claims to run in a distributed manner, but
only for fail-safe purposes. A master Neo4j database may be
accompanied by several slaves that keep an exact copy of the
graph. There are plans to implement sharding into Neo4j.

HyperGraphDB [8] is a general storage mechanism which
supports graph-oriented storage. It implements several stan-
dards such as OWL 2.0 and Topic Maps 1.0, but can also be
used to store general-purpose graphs because its query mech-
anisms support graph traversals and relational-style queries.

HyperGraphDB comes with a P2P framework that enables
data distribution between many HyperGraphDB instances.

Pregel [9] (developed at Google)i and its open-source im-
plementation Golden Orb [10] propose a massively distributed
computational model in which graph algorithms are built
from very small program fragments called super-steps. After
completion of each super-step, the program may exchange data
with other vertices or vote to halt the algorithm. Since Pregel is
based on MapReduce [11], it is designed as a batch-processing
system.

Trinity [12] is a distributed in-memory graph database
that supports offline analysis and online query processing
of graphs. Its distributed architecture, which is based on a
memory cloud, allows low latency queries to be processed on
”web-scale” billion-node graphs.

The InfiniteGraph system [13] uses a similar architecture. It
provides a graph database system that can be distributed on a
cluster of commodity hardware and is mainly used for online
graph processing.

The graph database system presented in [14] is accompanied
by a graph-processing system which allows complex analysis
of social graphs stored in the database. The authors use several
Neo4j databases as their storage back-end.

Our system differs from others in the following points.
(1) Many systems lack the ability to address dynamic

properties of graphs and networks. Most of them are imple-
mented as distributed graph storage systems, distributed graph
processing systems or as a combination of both, but all of
them focus on static properties of graphs.

(2) The most common application area is social network
analysis. We have also identified this as an important field,
but our concept is targeted towards general-purpose graph
processing, covering several application areas, such as network
analysis, social network analysis, and analysis of biological
processes.

III. PRELIMINARIES

In this section we define key terms used throughout this
paper to avoid ambiguities. For example, the term node might
be ambiguous as it could refer to both a computing node within
a compute cluster and a vertex in a graph. In this work, the
term node is used only for computing nodes.

We call a graph a set of vertices and edges. The edges
connect the vertices and have a direction. If not specified
otherwise, our system operates on directed graphs.

We allow further information, which we call profile to be
stored with each vertex. The profile may contain arbitrary
information describing the vertex in more detail.

A dynamic graph is a set of graphs, each of which is a
model of the same sample at different points in time [15],
[16].

Next, we define some terms in the context of cloud com-
puting. Cloud computing itself is defined as software-based
on-demand access to a shared pool of configurable resources.
These resources can be computers, storage, or networking
resources and can be provisioned and released entirely through
software-based interaction. Usually, this model of computing
requires no management effort or service provider interaction
to acquire new computing resources.

NIST [17] defines three different cloud computing service
models: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS).

In this work, we make heavy use of the IaaS model. It allows
us to provision computing resources as and when needed
by the system. An infrastructure cloud provides mechanisms
for creating and managing virtual computing instances with
software. The user is responsible for all the software that
runs on the virtual computing resources and thus gains the
flexibility to install any operating system needed. In this paper,
the term cloud refers to an IaaS cloud.

Our system, however, is designed to operate as a PaaS cloud,
with applications enabled to use our system as their platform
for distributed graph storage and processing.

In this paper, we call a virtual machine provided by an
infrastructure cloud a compute node. A compute node is an
abstract concept of a computer; it shares many properties
with a computer, but some of them are poorly defined. Only
abstract specifications are stated, for instance, ”Large Machine
Template” instead of exact processor, memory, and storage
specifications.

Since our architecture is built around a distributed comput-
ing model, we mainly work with sets of compute nodes that
work in concert towards a common goal. In this work, we call
such a set of compute nodes a cluster.

IV. DATA MINING ON DYNAMIC GRAPHS

To allow analysis of dynamic graph properties, we propose
a system that leverages loud computing resources in order to
run a distributed computing cluster.
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Fig. 1. Schematic diagram of our architecture.

A. Concept

As previously stated, our system is modeled around a
distributed computing model. One of its main components is
a cluster of compute nodes which work together to store the
global model of the graph. Each compute node is stores and
processes part of the global graph.

The cluster is interfaced by a middle-ware layer, which
manages all aspects of the software system that are not related
to the graph model for instance, authentication, user session
management, and keeping track of general system health.

Client applications access the system via the middle-ware
layer. They can be diverse depending on the field of appli-
cation. Our prototype contains an example application which
allows simple queries. The results are presented as visualiza-
tions.

Figure 1 shows a holistic view of the architecture and how
the principal components of our system and illustrates how
the components are linked.

The middle-ware interfaces with the master node of the
cluster and is used by the clients to query data from the system.
Individual compute nodes report their results directly back to
the middle-ware. Data sources interface with the master node
in order to change the global graph model. However, it is also
possible that data sources are run the same cluster system.

Below we describe each component in more detail.
Graph Data Mining Cluster: This component is at the heart

of the system and comprises many different compute nodes.
The first compute node is the master node of the system and
plays a special role: it tracks a list of sub-graphs that are
available in the system. This list contains pointers to individual
compute nodes that own a local copy of that specific sub-
graph.

All update commands are sent to the master node, which
ensures that the update commands are forwarded to the correct
compute node.

Each compute node manages its own part of the graph. This
is achieved by keeping a list of all vertices that are stored on
a node. The list points to description files - termed profiles -
that contain more details about these vertices.

A profile may contain arbitrary data as long as it is encoded
in a structured format. In our implementation, we use JSON
[18] to encode profile data. Only two fields in each profile
are critical. The first is a vertex id, which identifies a vertex
globally within the system, and the second stores the incoming
and outgoing edges of the vertex.

As previously mentioned, the rest of the profile may contain
any kind of data and be specific to a particular application. For
instance, in the context of social network analysis, the profile
could contain data that describes a person.

Algorithms that are applied to a graph can also update
profile properties, for example, by adding intermediate results:
an algorithm that calculates the degrees of the vertices could
write the results into each vertex profile for later reference.

The dynamics of a graph are reflected in each vertex profile.
Whenever a profile is changed, either by altering a profile
property or by altering the list of incoming and outgoing edges,
a copy of the profile is created. As time passes all history data
becomes available to each vertex in the graph.

This allows our system to perform operations on a snapshot
of the graph. We are thus able to determine the state of each
vertex at any point in time.

Middle-ware: A middle-ware layer is needed to manage all
aspects that are not related to the graph, for example, managing
user sessions and authentication. It provides a RESTful [19]
interface for client applications and relays requests and their
results from the client to the cluster and vice versa.

The main purpose of the middle-ware layer is to send
queries to the cluster and wait for results from the individual
compute nodes. The system basically two types of queries:
static and dynamic. Static queries specify a time-stamp which
refers to a point in the past, and the cluster responds to the
query on the basis of a snapshot of the graph at that time.

The master node of the cluster distributes a static query to
all compute, which try to answer the query given their local
sub-graph. Each compute node sends its result back to the
master node, which in turn passes it in larger packets on to
the middle-ware.

A static query ends after a timeout specified in the query and
depends on the application. It should be as short as possible
since the middle-ware waits for the timeout to expire and then
returns the result to the clients.

Dynamic queries are handled in a similar way, but do not
specify a time stamp for the snapshot, and specify a much
longer timeout or none at all.

The middle-ware and the cluster keep lists of the dynamic
queries. Whenever the graph changes each compute node
affected checks all currently active dynamic queries in order
to adapt their results.

Clients: The purpose of a client in our system is to view and
analyze the graph data stored in the cluster. This is the reason
why the clients are given only limited abilities to change the
graph.

Clients are able to connect to the middle-ware via a RESTful
service. They open two communication streams to the middle-
ware: one, opened on demand, sends commands and queries
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dashed boxes are components outside the topology.

to the cluster, and the other is kept open for the complete
duration of a user session; it is used by the middle-ware to
direct query results back to a client.

The latter communication channel is especially important in
cases where the client has sent a dynamic query to the cluster.
Such queries are kept active until the user stops them, they
time our, or the user session ends.

Data Sources: All the components presented so far access
the system through the middle-ware layer. Data sources,
however, are enabled to send data directly to the cluster. In
our reference implementation, we allow data sources to be
deployed on the very same cluster that also operates the graph
processing engine. Hence, data sources can be used that would
otherwise cause bottlenecks in the middle-ware layer.

Data sources are able to issue insert, update, and delete
commands to the cluster. The master node of the cluster
ensures that the commands are routed to the correct compute
nodes.

B. Prototype

To demonstrate the feasibility of our approach, we created
a reference implementation.

Our prototype implementation already contains many of the
building blocks needed. It is able to store the model of a large
dynamic graph and to expose this model to clients via a simple
query interface.

The current implementation is based on Storm, a distributed
and fault-tolerant framework for real-time computation. We

Fig. 3. Screen-shot of our web-based visualization.

use the storm concept of spouts to stream graph data and
selection commands to the system. In Storm, very small
program blocks called bolts are used to perform computations.
In a Storm topology spouts and bolts can be connected.

Storm is capable of processing streaming big data by
deploying a topology built of spouts and bolts on a compute
cluster. Storm dynamically distributes spouts and bolts to
optimize the overall system for throughput.

We leverage Storm’s cluster computing capabilities in order
to distribute our graph model and graph processing in the
Cloud.

Its cluster capabilities make Storm an excellent example
platform. It handles load-balancing automatically and adjusts
the cluster to the workload on each compute node.

Storm is also very fault-tolerant. A Storm cluster can be
resized dynamically by adding or removing nodes. In some
application scenarios, where the cluster does not maintain a
persistent state, some compute nodes can even be turned off
without affecting system stability.

Figure 2 illustrates the topology of our prototype system
and how spouts and bolts, parse e-mail messages. The e-
mail data source sends a stream of plain e-mail messages to
the e-mail spouts. Each e-mail spout separates the individual
messages and passes them on to the e-mail bolt, where the
plain message is parsed for sender and recipient address,
subject, and message id. This tuple is then sent to the model
bolts, where the dynamic model is stored. The middle-ware
can send queries to the cluster via the command spout, which
distributes the commands to all model bolts. The graph bolt
accepts query results and forwards them to the middle-ware
layer.

Our current query interface supports three simple query
types: the first is able to query the complete graph currently
stored in the system, the second allows specification of a list
of node names that are to be loaded from the cluster, and the
third provides the option to load a list of nodes and their direct
neighbors. All queries can be submitted either as static or as
dynamic queries.

Figure 3 the results of querying some specific profiles from



the Enron e-mail corpus [20] in order to investigate their
communication relationship. Within the graph visualization,
the user can modify the graphical representation of the graph
by rearranging individual vertices, zooming in an out, and
panning. Double licking a vertex loads all its neighbors. This
mechanism allows close examination of the data by drilling
deeper into the model.

V. EVALUATION AND LESSONS LEARNED

Only a few data sets that are both very large and dynamic
are available for research. We used two data sets to test our
system with respect to both criteria.

We used the Enron e-mail corpus [20]. to test our system’s
handling of dynamic graph properties, that is, its ability to
adapt the results to reflect changes in the graph. This corpus,
which was made available after the Enron scandal [21] in
October 2001, consists of 517,425 individual messages in 150
mailboxes. It is stored as a 2.5 GB large MBox directory,
where each message, stripped of its attachments, is contained
in an individual file.

To explore dynamic properties of graphs, we loaded the e-
mail corpus. We followed the time stamps in the messages
to recreate the history of the communication graph. Thus, we
are able to observe how the communication network in Enron
evolved over time.

In order to test our system with large graphs, we chose
a Facebook sub-graph that was extracted from the Facebook
system in 2009. Although it is possible to query Facebook
for graph data, the company strictly limits the amount of
data that can be extracted from their system. The data set
was augmented to larger size using the Metropolis-Hastings
algorithm. It contains 957,000 unique user profiles and their
relationships [22].

The Facebook graph we used does not contain any time
stamps. During the import, the data set was read in a sequen-
tially, and the time stamps assigned indicate the time of import.
We used this data set to experiment with large sparse graphs
as typically found in social networks.

In our experiments, we were able to load both data sets to
a cluster, and users were able to query the graph model.

The data source, cluster and middle-ware software compo-
nents were deployed on our OpenNebula private cloud in a
variety of configurations. We used virtual machine instances
configured with two virtual CPUs and 4096 MB of RAM. We
created clusters of different sizes to see if cluster size affects
the time required to load a data set.

Our OpenNebula cloud resources are reserved for research
and it is thus possible to dedicate the whole system exclusively
to single experiments. It is equipped with two compute nodes
which both feature two 6-core Intel(R) Xeon(R) X5690 CPUs
running at a clock rate of 3.47 GHz. Both machines are also
equipped with 36 GB RAM.

To avoid overprovisioning of resources, our experiments
were limited to 24 virtual CPUs and 72 GB of RAM. However,
the machines may encounter input output channel limitations,
which are currently not monitored.

TABLE I
LOAD TIME OF THE ENRON E-MAIL CORPUS WITH DIFFERENT

CONFIGURATIONS

Number of Nodes Average Fastest Slowest
1 1091 942 1169
2 539 497 611
3 619 578 677
4 419 395 436
5 458 436 477
6 423 393 444
7 452 419 519
8 458 447 465
9 452 440 462

For each run of the experiment, we created all necessary vir-
tual machines from scratch. Disk images and virtual machines
from previous runs were not reused to avoid any effects due
to file system caching which was enabled in the Linux kernels
used.

For our tests with the Enron e-mail corpus, we used a desig-
nated virtual machine as data source. This designated machine
was running software that can read any e-mail database stored
in MBox format and exposes the plain e-mail messages on a
TCP/IP socket. The measurements were embedded to the data
source. The virtual machine stored a time stamp when the first
client connected and requested to read the e-mail database. It
then measured the elapsed time until all e-mail messages were
sent to the processing cluster.

The cluster ran a Storm spout that was able to read from this
socket and passed the plain e-mail messages to the cluster for
further processing. This spout was designed to launch many
instances in parallel to avoid reduces a potential bottle neck
in input output operations.

Our results show that the massively parallel approach of our
architecture leads to faster load times compared to sequential:
on average, loading the Enron e-mail corpus sequentially into
the model takes 1091 seconds whereas our fastest parallel load
with 6 compute nodes took 393 seconds.

Table I lists the fastest, the slowest, and the average load
times for Storm clusters containing 1 to 9 compute nodes. We
recorded 5 runs to average out distortions.

Our results show that the load times become considerably
shorter when the number of nodes increases from 1 to 4.
Beyond this number, no significant changes in load time were
measured. The configurations with 5 and 8 compute nodes
showed load times of nearly 4 minutes.

This result is contrary to the naive expectation that a larger
number of compute nodes leads to shorter load times. In fact,
larger clusters lead to more complexity in message passing
and a higher amount of network communication.

Since our current platform constitutes only a proof of
concept, it lacks mechanisms for performance measurements
inside the cluster. Therefore, it was not bench-marked against
the current state of the art of graph databases.

Our system differs architecturally from other systems in



three main ways: (1) Frameworks such as Pregel [9] and the
open source implementation Golden Orb [10] are designed for
distributed offline processing of static graph data, whereas our
approach performs online processing of dynamic graph data.
(2) Although pure graph databases that rely on individual and
multiple distributed Neo4j [7] instances have been presented
[14], they both lack our system’s ability to process dynamic
graph data, and the former does not support distributed storage
and processing of graphs. (3) Finally, systems such as Hyper-
GraphDB [8] and Trinity [12] focus on distributed processing
of graph data, but - unlike our system - they are also limited
to static graph processing algorithms.

As part of our future work, we will focus on the im-
plementation of graph algorithms that are comparable to
implementations in other systems. Further, we will instrument
our source code extensively to measure its performance.

Considering profiles, our system still has weaknesses. Pro-
file versioning currently creates deep copies of the last profile
used, which makes storing profile history complex and per-
formance poor. We will address this issue and use well-know
versioning algorithms in order to store only differential data.

The performance of many algorithms could possibly be
increased if the graph were intelligently distributed over the
cluster. This should be done in a way that preserves data
locality. However, finding good splits in large, dense graphs is
a complex problem. Nevertheless, we are planning to extend
our framework such that most vertices of a sub-graph end up
on the same compute node. Our current implementation places
vertices on compute nodes randomly.

VI. CONCLUSION

We have presented a platform for distributed data mining
on large dynamic graphs. We have argued that by keeping the
history of all changes to the graph, we are able to calculate its
dynamic properties. The ability to evaluate the dynamics of a
graph opens up exciting new applications.

An initial evaluation of our system showed that the dis-
tributed approach leads to better performance. Since the sys-
tem is still a work in progress, we evaluated it by importing
the Enron e-mail corpus to the system. When we measured
the import time we found that a purely sequential import takes
the system approximately 1091 seconds on average, whereas
a parallel import with 4 compute nodes in the cluster takes
only 393 seconds.
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