
DYNAMOGRAPH: A DISTRIBUTED SYSTEM
FOR LARGE-SCALE, TEMPORAL GRAPH
PROCESSING, ITS IMPLEMENTATION AND
FIRST OBSERVATIONS

Matthias Steinbauer, Gabriele Anderst-Kotsis

Institute of Telecooperation

TALK OUTLINE

⬛ Introduction and Motivation
⬛ Temporal Graph Models and Related Work
⬛ DynamoGraph
⬛ Architecture
⬛ Pregel and Extensions

⬛ Examples
⬛ PageRank
⬛ Community Detection
⬛ Web-based Workbench

⬛ Conclusions

INTRODUCTION / MOTIVATION

⬛ Graphs serve as models for real world structures in many different
disciplines
⬛ Social sciences > Social networks
⬛ Biology > Protein-Protein Interactions
⬛ Cartography > Digital road maps
⬛ Web > The web graph

⬛ Graph and network models are very well studied in mathematics
computer science and related disciplines

⬛ So why is there need for new research in this area?

REAL WORLD GRAPHS
OFTEN GROW TO LARGE SCALES

It is not feasible to process
large graphs with traditional

tools and algorithms

require new
tactics for

visualisation

Exceed
memory size of single

computer

THE DIMENSION OF TIME CANNOT
BE NEGLECTED

Static reachability measures
in social networks

do not hold for dynamic networks

Biological processes
are time dependentStatic views on

graphs often
show blurred or too dense

data

TEMPORAL GRAPHS

F. Harary and G. Gupta. Dynamic Graph Models. Mathl. Comput. Modelling, 25(7):79–87, 1997.

Graph G is a pair (V, E)
where V denotes the set of vertices and E denotes
the set of edges between any v, e ∈ V

A temporal graph T can be given as a set of graphs
T = {G1, G2, G3, …, Gt} where each Gx = (Vx, Ex)
Gx is called a static snapshot at time x
And Gtm..tn as a selection of multiple Gx from T is
a static snapshot for a timespan

⬛ Due to popular demand traditional
graph databases now support
temporal data storage

⬛ Trivial solution is to model time-
spans as nodes and connect data
nodes only via time-span nodes

⬛ Efficient Querying (Important
requirement for a database)

⬛ Get all nodes starting with T2

⬛ Only distributed / scalable storage
but not processing

GRAPH DATABASES

T1 (V1, V3)

T2 (V1, V3)v1

v4

v5

v3

v2

T2 (V1, V5)

T2 (V2, V3)

T1 (V1, V2)

C. Cattuto, M. Quaggiotto, A. Panisson, and A. Averbuch,
Time-varying social networks in a graph database: a Neo4j
use case. New York, New York, USA: ACM, 2013, pp. 11–6.

DISTRIBUTED MATRIX PROCESSING

⬛ (Sparse) matrices have
long served as model for
graphs

⬛ Many popular graph
algorithms have efficient
implementations for
matrices

⬛ Distributed matrix
processors (multiplicators)
can be used to cope with
large scale graphs

⬛ Temporal aspect hard to
integrate

V1 V2 V3 V4

V1 7
V2 3 3
V3 8
V4 1

V3 V4

V3

V4

V1 V2

V1 7
V2 3

two blocks omitted for readability

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-Scale Graph Mining System - Implementation
and Observations,” presented at the 2009 Ninth IEEE International Conference on Data Mining (ICDM), 2009, pp.
229–238.

DISTRIBUTED GRAPH PROCESSING

⬛ Dominantly implementations
on top of Big Data systems

⬛ Data-set is living on a
distributed file-system

⬛ Graph processing jobs are
implemented as MapReduce
jobs

⬛ Famous Google Pregel paper
with open source
implementations (Giraph,
GPS, etc.)

⬛ Temporal aspects not covered

Graph processing job (Pregel)

MapReduce framework

Distributed Filesystem (GFS /

7, 19, 8
7, 4, 3
8, 27, 4

graph.csv

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for
Large-Scale Graph Processing. In ACM SIGMOD International Conference on Management of Data, 2010.

CHRONOS AND IMMORTALGRAPH

⬛ Research line by Microsoft
⬛ Also introduces a concept of time-spans for analysis
⬛ Current iterations designed towards clever in-memory layout:
⬛ temporal locality
⬛ structural locality

Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, E. Chen, and W. Chen,
“ImmortalGraph: A System for Storage and Analysis of Temporal Graphs,” ACM Transactions on
Storage (TOS), vol. 11, no. 3, pp. 14–34, Jul. 2015.

W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, and E. Chen, “Chronos,”
presented at the the Ninth European Conference, New York, New York, USA, 2014, pp. 1–14.

VERTEX CENTRIC EMBODIMENT WITH TEMPORAL DOCUMENT

{
id: 39827736,
resolution: 'MONTHS',
'1420070400': {

name: 'Rob Henderson',
description: '',
inEdges: [{

weight: 3.3,
edgeType: 'PHONE',
source: 39761932,
target: 39827736, }],

outEdges: [{
weight: 4.0,
edgeType: 'EMAIL',
source: 39827736,
target: 39761932, }],

},
'1422748800': {

inEdges: [{
weight: 4.0,
edgeType: 'PHONE',
source: 39761932,

HORIZONTAL SCALABILITY

host1 host2 host3
5 2

ZooKeeper

Private
Communication

Network

Host 0 (Master) Host 1 (Worker)Client

PartitionManager

SuperStepManager

CodeManager

Client API

MasterProcess

Public
Communication

Network

ClientApp WorkerProcess / Slots

Cassandra
Node

Partition

StepExecutor

MessageQueue

WorkerProcess / Slots

Cassandra
Node

Partition

StepExecutor

MessageQueue

Host n (Worker)

DYNAMOGRAPH ARCHITECTURE

TEMPORAL PREGEL IN A SINGLE SLIDE

⬛ A compute function c / execute is implemented by the application
developer which is executed in iterations / steps

⬛ It runs in the context of a vertex v, a timespan t, and receives a list of
incoming messages {m0, m1, …, mn}

⬛ c sees v as it would have looked in timespan t

⬛ Since c relies on local information only, it can be executed in parallel
for all vertices

⬛ Messages can be sent to other vertex threads through a messaging
function m(v, x) sending message x to vertex v

⬛ Messages sent in step s are received in step s+1

⬛ The code in c can vote to halt algorithm execution; execution halts if all
vertices voted to halt; vertices that voted get disabled
⬛ Vertices are enabled if they receive messages

EXTENSIONS OVER THE ORIGINAL PREGEL
FRAMEWORK

⬛ Temporal filtering: algorithms can be run in the context of a
timespan such that only data from this timespan is considered by
the framework

⬛ Execution Triggers
⬛ Global memory: with related management functionality to allow:
⬛ Initialisation: Prior algorithm scheduling the application

developer can initialise (Settings, Parameters, etc.)
⬛ Access and Update: Slots see a local copy of the global

memory map
⬛ Merging: After each step / iteration conflicts in the global map

must be resolved through (user defined) merge strategies

PREGEL / COMPUTE AGGREGATE BROADCAST

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for Large-
Scale Graph Processing. In ACM SIGMOD International Conference on Management of Data, 2010.

Master

Worker 1

Worker 2

Worker 3

Worker 4

In
it
ia

lis
a
ti
o
n

L
o
c
a
l
C

o
m

p
u
ta

ti
o
n

M
e

s
s
a
g
e
 R

o
u
ti
n
g

Step 1

S
y
n
c
ro

n
is

a
ti
o
n

L
o
c
a
l
C

o
m

p
u
ta

ti
o
n

Step 2
M

e
s
s
a
g
e
 R

o
u
ti
n
g

S
y
n
c
ro

n
is

a
ti
o
n

L
o
c
a
l
C

o
m

p
u
ta

ti
o
n

Step 3

M
e

s
s
a
g
e
 R

o
u
ti
n
g

H
a

lt
in

g

PAGE RANK IN DYNAMOGRAPH

⬛ PageRank is a natural fit for Pregel style computation
⬛ Originally (and perhaps still) used by Google to rate websites for

their search index

⬛ Each vertex starts out with an initial PageRank INITRANK

⬛ In a continuous process each vertex reads its own PageRank,
divides it by the number of (outgoing) edges and sends this
number to its neighbours

⬛ Vertices receive all messages from neighbours, and set the sum
as their new PageRank

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Stanford InfoLab, 1999.

public void execute(
List<VertexMsg> messages, VertexContext vertexContext,
SuperStepContext superstepContext,
Timeframe timeframe, Vertex vertex) {
if(this.getStep() >= PageRank.MAX_ITER) {

voteToHalt(vertexContext); return;
}
if(this.getStep() == 0L) {

setPageRank(vertexContext, PageRank.INITRANK);
Collection<Edge> outEdges = vertex.getWeightedOutEdgesReading();
float outRank = (pageRank * PageRank.DAMP) / outEdges.size();
for(Edge out : outEdges) {

sendMessage(out.getTarget(), outRank);
}

}else{
if(messages.size() > 0) {

float changedby = 0.0f; float sumIncoming = 0.0f;
for(VertexMessage m : messages) {

sumIncoming += m.getFloatValue();
}
changedby = setPageRank(vertexContext, sumIncoming);
if(changedby >= PageRank.SWING_THRESHOLD) {

Collection<Edge> outEdges = vertex.getWeightedOutEdgesReading();
float pageRank = getPageRank(vertexContext);
float outRank = (pageRank * PageRank.DAMP) / outEdges.size();
for(Edge out : outEdges) {

sendMessage(out.getTarget(), outRank);
}

}
}
voteToHalt(vertexContext);

}
}

ha
lt

in
it

pr
oc

es
si

ng

LABEL PROPAGATION COMMUNITY
DETECTION IN DYNAMOGRAPH

Observe neighbouring community labels
Apply the label most often found or

if none such can be found the smallest one

U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community
structures in large-scale networks,” Phys. Rev. E, vol. 76, no. 3, p. 036106, Sep. 2007.

LABEL PROPAGATION COMMUNITY
DETECTION IN DYNAMOGRAPH

Observe neighbouring community labels
Apply the label most often found or

if none such can be found the smallest one

LABEL PROPAGATION COMMUNITY
DETECTION IN DYNAMOGRAPH

Observe neighbouring community labels
Apply the label most often found or

if none such can be found the smallest one

LABEL PROPAGATION COMMUNITY
DETECTION IN DYNAMOGRAPH

after some more iterations

Observe neighbouring community labels
Apply the label most often found or

if none such can be found the smallest one

public void execute(
List<VertexMsg> messages, VertexContext vertexContext,
SuperStepContext superstepContext,
Timeframe timeframe, Vertex vertex) {

if(this.getStep() == 0L) {
this.setVertexLabel(vertexContext, vertex.getId());
propagateVertexLabel(vertex, vertexContext);

}else if(this.getStep() >= 8){ // 8 iterations
voteToHalt(vertexContext);

}else{
Map<Long, Integer> count = new HashMap<Long, Integer>();
for(VertexMessage m : messages) {

Long clusterId = (Long) m.getBody();
if(!count.containsKey(clusterId)) {

count.put(clusterId, 1);
}else{

Integer currentCount = count.get(clusterId);
currentCount ++;
count.put(clusterId, currentCount);

}
}
long clusterId = findMaxClusterId(count);
setVertexLabel(vertexContext, maxClusterId);
propagateVertexLabel(node, vertexContext);

}
}

}

ha
lt

in
it

pr
oc

es
si

ng

full time-span

967
members
IRC channel

Data from Ecker 2015

selected
time-span

1st June 2008
15th June 2008

967
members
IRC channel

2002 - 2005

2013 - now

REAL WORLD SOCIAL NETWORKS

⬛ Data is available as online resource
⬛ Users can filter and load data into DynamoGraph
⬛ Algorithms for automatic layout of the visualisation are available

(ForceAtlas2)

⬛ In visualisation it is already clear that reachability measures
computed on the full time-span will often not hold on shorter time-
spans
⬛ How is information dissemination influenced by that fact?
⬛ Can we perform cluster analysis on users and identify topics of

interest?

FUTURE WORK

⬛More temporal graph algorithms are to be implemented
(reachability, clustering, …) to provide more interesting
metrics to our users

⬛ Proper Evaluation targeted Dataset: Click from Indiana
University
⬛ Private Cloud test with 24 CPUs ~288 GB of memory
⬛ MACH super computing infrastructure single system

image machine (2048x4 cores, 16 TB memory)

CONCLUSIONS AND FUTURE WORK

⬛ DynamoGraph as a platform for large-scale temporal graph
processing has matured enough to be evaluated in scientific
scenarios

⬛ Two example algorithms were shown that demonstrate how
potential application developers can create processing
pipelines in this paradigm

⬛ A web-based graph work-bench as a first prototype was
briefly shown to demonstrate the necessity of temporal
analysis

Matthias Steinbauer
matthias.steinbauer@jku.at

slides available at
http://steinbauer.org/

mailto:matthias.steinbauer@jku.at
http://steinbauer.org/

