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INTRODUCTION / MOTIVATION

⬛ Graphs serve as models for real world structures in many different 
disciplines 
⬛ Social sciences > Social networks 
⬛ Biology > Protein-Protein Interactions 
⬛ Cartography > Digital road maps 
⬛ Web > The web graph 

⬛ Graph and network models are very well studied in mathematics 
computer science and  related disciplines 

⬛ So why is there need for new research in this area?



REAL WORLD GRAPHS 
OFTEN GROW TO LARGE SCALES

It is not feasible to process 
large graphs with traditional 

tools and algorithms 

require new 
tactics for 

visualisation

Exceed 
memory size of single 

computer



THE DIMENSION OF TIME CANNOT 
BE NEGLECTED

Static reachability measures 
in social networks 

do not hold for dynamic networks

Biological processes 
are time dependentStatic views on 

graphs often 
show blurred or too dense 

data



TEMPORAL GRAPHS

F. Harary and G. Gupta. Dynamic Graph Models. Mathl. Comput. Modelling, 25(7):79–87, 1997.

Graph G is a pair (V, E)
where V denotes the set of vertices and E denotes 
the set of edges between any v, e ∈ V

A temporal graph T can be given as a set of graphs 
T = {G1, G2, G3, …, Gt} where each Gx = (Vx, Ex) 
Gx is called a static snapshot at time x 
And Gtm..tn as a selection of multiple Gx from T is 
a static snapshot for a timespan



⬛ Due to popular demand traditional 
graph databases now support 
temporal data storage 

⬛ Trivial solution is to model time-
spans as nodes and connect data 
nodes only via time-span nodes 

⬛ Efficient Querying (Important 
requirement for a database) 

⬛ Get all nodes starting with T2 

⬛ Only distributed / scalable storage 
but not processing

GRAPH DATABASES

T1 (V1, V3)

T2 (V1, V3)v1

v4

v5

v3

v2

T2 (V1, V5)

T2 (V2, V3)
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C. Cattuto, M. Quaggiotto, A. Panisson, and A. Averbuch, 
Time-varying social networks in a graph database: a Neo4j 
use case. New York, New York, USA: ACM, 2013, pp. 11–6.



DISTRIBUTED MATRIX PROCESSING

⬛ (Sparse) matrices have 
long served as model for 
graphs 

⬛ Many popular graph 
algorithms have efficient 
implementations for 
matrices 

⬛ Distributed matrix 
processors (multiplicators) 
can be used to cope with 
large scale graphs 

⬛ Temporal aspect hard to 
integrate

V1 V2 V3 V4

V1 7
V2 3 3
V3 8
V4 1

V3 V4

V3

V4

V1 V2

V1 7
V2 3

two blocks omitted for readability

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-Scale Graph Mining System - Implementation 
and Observations,” presented at the 2009 Ninth IEEE International Conference on Data Mining (ICDM), 2009, pp. 
229–238.



DISTRIBUTED GRAPH PROCESSING

⬛ Dominantly implementations 
on top of Big Data systems 

⬛ Data-set is living on a 
distributed file-system 

⬛ Graph processing jobs are 
implemented as MapReduce 
jobs 

⬛ Famous Google Pregel paper 
with open source 
implementations (Giraph, 
GPS, etc.) 

⬛ Temporal aspects not covered

Graph processing job (Pregel)

MapReduce framework

Distributed Filesystem (GFS / 

7, 19, 8
7, 4, 3
8, 27, 4

graph.csv

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for 
Large-Scale Graph Processing. In ACM SIGMOD International Conference on Management of Data, 2010.



CHRONOS AND IMMORTALGRAPH

⬛ Research line by Microsoft 
⬛ Also introduces a concept of time-spans for analysis 
⬛ Current iterations designed towards clever in-memory layout: 
⬛ temporal locality 
⬛ structural locality

Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, E. Chen, and W. Chen, 
“ImmortalGraph: A System for Storage and Analysis of Temporal Graphs,” ACM Transactions on 
Storage (TOS), vol. 11, no. 3, pp. 14–34, Jul. 2015.

W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, and E. Chen, “Chronos,” 
presented at the the Ninth European Conference, New York, New York, USA, 2014, pp. 1–14.



VERTEX CENTRIC EMBODIMENT WITH TEMPORAL DOCUMENT

{
id: 39827736,
resolution: 'MONTHS',
'1420070400': {

name: 'Rob Henderson',
description: '',
inEdges: [ {

weight: 3.3,
edgeType: 'PHONE',
source: 39761932,
target: 39827736, } ],

outEdges: [ {
weight: 4.0,
edgeType: 'EMAIL',
source: 39827736,
target: 39761932, } ],

},
'1422748800': {

inEdges: [ {
weight: 4.0,
edgeType: 'PHONE',
source: 39761932,



HORIZONTAL SCALABILITY

host1 host2 host3
5 2
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DYNAMOGRAPH ARCHITECTURE



TEMPORAL PREGEL IN A SINGLE SLIDE

⬛ A compute function c / execute is implemented by the application 
developer which is executed in iterations / steps 

⬛ It runs in the context of a vertex v, a timespan t, and receives a list of 
incoming messages {m0, m1, …, mn}

⬛ c sees v as it would have looked in timespan t 

⬛ Since c relies on local information only, it can be executed in parallel 
for all vertices 

⬛ Messages can be sent to other vertex threads through a messaging 
function m(v, x) sending message x to vertex v 

⬛ Messages sent in step s are received in step s+1 

⬛ The code in c can vote to halt algorithm execution; execution halts if all 
vertices voted to halt; vertices that voted get disabled 
⬛ Vertices are enabled if they receive messages



EXTENSIONS OVER THE ORIGINAL PREGEL 
FRAMEWORK

⬛ Temporal filtering: algorithms can be run in the context of a 
timespan such that only data from this timespan is considered by 
the framework 

⬛ Execution Triggers 
⬛ Global memory: with related management functionality to allow: 
⬛ Initialisation: Prior algorithm scheduling the application 

developer can initialise (Settings, Parameters, etc.) 
⬛ Access and Update: Slots see a local copy of the global 

memory map 
⬛ Merging: After each step / iteration conflicts in the global map 

must be resolved through (user defined) merge strategies



PREGEL / COMPUTE AGGREGATE BROADCAST

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for Large-
Scale Graph Processing. In ACM SIGMOD International Conference on Management of Data, 2010.
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PAGE RANK IN DYNAMOGRAPH

⬛ PageRank is a natural fit for Pregel style computation 
⬛ Originally (and perhaps still) used by Google to rate websites for 

their search index 

⬛ Each vertex starts out with an initial PageRank INITRANK 

⬛ In a continuous process each vertex reads its own PageRank, 
divides it by the number of (outgoing) edges and sends this 
number to its neighbours 

⬛ Vertices receive all messages from neighbours, and set the sum 
as their new PageRank

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation 
Ranking: Bringing Order to the Web,” Stanford InfoLab, 1999.



public void execute(
List<VertexMsg> messages, VertexContext vertexContext,
SuperStepContext superstepContext,
Timeframe timeframe, Vertex vertex) {
if(this.getStep() >= PageRank.MAX_ITER) {

voteToHalt(vertexContext); return;
}
if(this.getStep() == 0L) {

setPageRank(vertexContext, PageRank.INITRANK);
Collection<Edge> outEdges = vertex.getWeightedOutEdgesReading();
float outRank = (pageRank * PageRank.DAMP) / outEdges.size();
for(Edge out : outEdges) {

sendMessage(out.getTarget(), outRank);
}

}else{
if(messages.size() > 0) {

float changedby = 0.0f; float sumIncoming = 0.0f;
for(VertexMessage m : messages) {

sumIncoming += m.getFloatValue();
}
changedby = setPageRank(vertexContext, sumIncoming);
if(changedby >= PageRank.SWING_THRESHOLD) {

Collection<Edge> outEdges = vertex.getWeightedOutEdgesReading();
float pageRank = getPageRank(vertexContext);
float outRank = (pageRank * PageRank.DAMP) / outEdges.size();
for(Edge out : outEdges) {

sendMessage(out.getTarget(), outRank);
}

}
}
voteToHalt(vertexContext);

}
}
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LABEL PROPAGATION COMMUNITY 
DETECTION IN DYNAMOGRAPH

Observe neighbouring community labels 
Apply the label most often found or 

if none such can be found the smallest one

U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community 
structures in large-scale networks,” Phys. Rev. E, vol. 76, no. 3, p. 036106, Sep. 2007.



LABEL PROPAGATION COMMUNITY 
DETECTION IN DYNAMOGRAPH

Observe neighbouring community labels 
Apply the label most often found or 

if none such can be found the smallest one



LABEL PROPAGATION COMMUNITY 
DETECTION IN DYNAMOGRAPH

Observe neighbouring community labels 
Apply the label most often found or 

if none such can be found the smallest one



LABEL PROPAGATION COMMUNITY 
DETECTION IN DYNAMOGRAPH

after some more iterations

Observe neighbouring community labels 
Apply the label most often found or 

if none such can be found the smallest one



public void execute(
List<VertexMsg> messages, VertexContext vertexContext,
SuperStepContext superstepContext,
Timeframe timeframe, Vertex vertex) {

if(this.getStep() == 0L) {
this.setVertexLabel(vertexContext, vertex.getId());
propagateVertexLabel(vertex, vertexContext);

}else if(this.getStep() >= 8){ // 8 iterations
voteToHalt(vertexContext);

}else{
Map<Long, Integer> count = new HashMap<Long, Integer>();
for(VertexMessage m : messages) {

Long clusterId = (Long) m.getBody();
if(!count.containsKey(clusterId)) {

count.put(clusterId, 1);
}else{

Integer currentCount = count.get(clusterId);
currentCount ++;
count.put(clusterId, currentCount);

}
}
long clusterId = findMaxClusterId(count);
setVertexLabel(vertexContext, maxClusterId);
propagateVertexLabel(node, vertexContext);

}
}

}
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full time-span

967 
members 
IRC channel

Data from Ecker 2015



selected 
time-span 

1st June 2008 
15th June 2008

967 
members 
IRC channel



2002 - 2005

2013 - now



REAL WORLD SOCIAL NETWORKS

⬛ Data is available as online resource 
⬛ Users can filter and load data into DynamoGraph 
⬛ Algorithms for automatic layout of the visualisation are available 

(ForceAtlas2) 

⬛ In visualisation it is already clear that reachability measures 
computed on the full time-span will often not hold on shorter time-
spans 
⬛ How is information dissemination influenced by that fact? 
⬛ Can we perform cluster analysis on users and identify topics of 

interest?



FUTURE WORK

⬛More temporal graph algorithms are to be implemented 
(reachability, clustering, …) to provide more interesting 
metrics to our users 

⬛ Proper Evaluation targeted Dataset: Click from Indiana 
University 
⬛ Private Cloud test with 24 CPUs ~288 GB of memory 
⬛ MACH super computing infrastructure single system 

image machine (2048x4 cores, 16 TB memory)



CONCLUSIONS AND FUTURE WORK

⬛ DynamoGraph as a platform for large-scale temporal graph 
processing has matured enough to be evaluated in scientific 
scenarios 

⬛ Two example algorithms were shown that demonstrate how 
potential application developers can create processing 
pipelines in this paradigm 

⬛ A web-based graph work-bench as a first prototype was 
briefly shown to demonstrate the necessity of temporal 
analysis



Matthias Steinbauer 
matthias.steinbauer@jku.at 

slides available at 
http://steinbauer.org/
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